Hypergeometric type extended bivariate zeta function
Main Article Content
Abstract
Based on the generalized extended beta function, we shall introduce and study a new hypergeometric-type extended zeta function together with related integral representations, differential relations, finite sums, and series expansions. Also, we present a relationship between the extended zeta function and the Laguerre polynomials. Our hypergeometric type extended zeta function involves several known zeta functions including the Riemann, Hurwitz, Hurwitz-Lerch, and Barnes zeta functions as particular cases.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
C. Berge, Principles of combinatorics, Academic Press, 1971.
Maged G. Bin-Saad, Sums and partial sums of double power series associated with the generalized
zeta function and their N-fractional calculus, Math. J. Okayama University, 49(2007),37-52.
Maged G. Bin-Saad, Hypergeometric series associated with the Hurwitz-Lerch zeta function, Acta
Math. Univ. Comenian. 78 (2009),269-286.
M.A. Chaudhry, S. M. Zubair, Generalized incomplete gamma function with applications, J. Com-
put. Appl. Math. 55(1994),99-124.
M.A. Chaudhry, A. Qadir, M. Raque, S. M. Zubair, Extension of Euler's beta function, J. Comput.
Appl. Math. 78(1997),19-32.
M.A. Chaudhry, A. Qadir, H. M. Srivastava, R. B. Paris, Extended hypergeometric and con
uent
hypergeometric functions, Appl. Math. Comput, 159(2004),589-602.
M.A. Chaudhry, S.M. Zubair, On a class of incomplete gamma functions with applications, CRC
Press (Chapman and Hall), Boca Raton, FL, 2002.
A. Erdelyi ,W. Magnus and F. Oberhettinger, Higher Transcendental Functions, Vol. I, McGraw-
Hill, New York, Toronto and London,1953.
O. Espinosa and V. H. Moll, On some integrals involving the Hurwitz zeta function:Part 2, The
Ramanujan J., 6(2002),159-188.
O. Espinosa, V. H. Moll, A generalized poly gamma function. Integral Transforms Spec. Funct. 15,
(2004),101115.
H. Exton, Multiple hypergeometric functions and applications, Halsted Press, London,1976.
M. Garg, K. Jain and S. L. Kalla, A further study of general Hurwitz-Lerch zeta function, Algebras
Groups Geom. 25 (2008), 311319.
S. Goyal and R. K. Laddha , On the generalized Riemann zeta function and the generalized Lambert
transform, Ganita Sandesh ,11(1997),99-108.
S. Kanemitsu, M. Katsurada and M. Yoshimoto, On the Hurwitz-Lerch zeta function, Aequationes
Math., 59(2000),1-19.
M. Katsurada, An application of Mellin-Barnes type integrals to the mean square of Lerch zeta-
function, Collect. Math., 48(1997),137-153.
D. Klusch, On the Taylor expansion of Lerch zeta-function, J. Math. Anal. Appl.,170(1992),513-523.
C.A. Larry, Special functions of mathematics for engineers, SPIE Press and Oxford University Press,
New York, London, 1998.
K.S. Miller and B. Ross, An introduction to the fractional calculus and fractional di erential equa-
tions, New York, 1993.
M.A.Ozaraslan, Some remarks on extended hypergeometric, extended con
uent hypergeometric and
extended Appell's functions. J. Comput. Anal. Appl. 14(6),(2012),1148-1153.
A.P. Prudnikov, Yu. A. Brychkov, O.I. Marichev, Integrals and Series, Volume 3, More special
functions, Amsterdam; Paris; New York [etc.] : Gordon and Breach science publ, 1990.
R.K. Raina and P. K. Chhajed, Certain results involving a class of functions associated with the
Hurwitz zeta function, Acta. Math. Univ. Comenianae, 1(2004),89-100.
L.J. Slater, Con
uent hypergeometric functions, Cambridge Univ. Press,1960.
H.M. Srivastava and P. K. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press, Bri-
stone, London, New York, 1985.
E.T. Whittaker and G. N. Watson, A Course of Modern Analysis, 4th ed., Cambridge Univ. Press,