A novel iterative algorithm for solving variational inequality, finite family of monotone inclusion and fixed point problems

Main Article Content

Anjali
Seema Mehra
Renu Chugh
Charu Batra

Abstract

In this paper, we introduce a method for finding common solution of variational inequality, finite family of monotone inclusion and fixed point problems of demicontractive mappings in a real Hilbert space. We prove strong convergence result of proposed method. We also provide a numerical example to show that our method is efficient from the numerical point of view.

Article Details

How to Cite
Anjali, Mehra, S., Chugh, R., & Batra, C. (2024). A novel iterative algorithm for solving variational inequality, finite family of monotone inclusion and fixed point problems. Tamkang Journal of Mathematics, 55(4), 351–369. https://doi.org/10.5556/j.tkjm.55.2024.5138
Section
Papers

References

P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward–backward splitting, Multiscale Model. Simul., 4 (2005), 1168–1200.

D. R. Sahu, J. C. Yao and M. Verma, Convergence rate analysis of proximal gradient methods with applications to composite minimization problems, Optimization, 70 (2021), 75–100.

X. Qin , N. T. An, Smoothing algorithms for computing the projection onto a Minkowski sum of convex sets, Comput. Optim. Appl., 74 (2019), 821–850.

T. H. Cuong, J.C. Yao and N. D. Yen, Qualitative properties of the minimum sum-of-squares clustering problem, Optimization, 69 (2020), 2131–2154.

Y. Wang and H. Zhang, Strong convergence of the viscosity Douglas-Rachford algorithm for inclusion problems, Appl Set-Valued Anal. Optim., 2 (2020), 339–349.

X. Qin and J. C. Yao, A viscosity iterative method for a split feasibility problem, J. Nonlinear Convex Anal., 20 (2019), 1497–1506.

B. Tan, S. Xu and S. Li, Inertial shrinking projection algorithms for solving hierarchical variational inequality problems, J. Nonlinear Convex Anal., 21 (2020), 871–884.

Q. H. Ansari, M. Islam and J. C. Yao, Nonsmooth variational inequalities on Hadamard manifolds, Appl Anal., 99 (2020), 340–358.

R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim., 14 (1976), 877-898.

R. E. Bruck and S. Reich, Nonexpansive projections and resolvents of accretive operators in Banach spaces, Houst. J. Math., 3 (1977), 459-470.

P. L. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM J. Numer. Anal., 16 (1979), 964-979.

Passty, G.B.: Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J. Math. Anal. Appl. 72, 383-390 (1979).

J. Douglas and H. H. Rachford, On the numerical solution of heat conduction problems in two and three space variables, Trans Am Math Soc., 82(1956), 421–439.

D. W. Peaceman and H. H. Jr. Rachford, The numerical solution of parabolic and elliptic differential equations, J. Appl. Ind. Math., 3 (1955), 28–41.

P. Tseng, A modified forward-backward splitting method for maximal monotone mappings, 24 SIAM J. Control Optim., 38 (2000), 431-446.

A. Gibali and D. V. Thong, Tseng type methods for solving inclusion problems and its applications, Calcolo, 55 (2018), 1-22.

B. T. Polyak, Some methods of speeding up the convergence of iteration methods, Comput. Math. Math. Phys., 4 (1964), 1-17.

D. A. Lorenz and T. Pock, An inertial forward-backward algorithm for monotone inclu30 sions, J. Math Imaging Vis., 51 (2015), 311-325.

W. Cholamjiak, P. Cholamjiak and S. Suantai, An inertial forward–backward splitting method for solving inclusion problems in Hilbert spaces, J. Fixed Point Theory Appl., 20 (2018), 1-17.

D. V. Thong and P. Cholamjiak, Strong convergence of a forward–backward splitting method with a new step size for solving monotone inclusions, Comput. Appl. Math., 38(2019), 1-16.

H. A. Abass, K. O. Aremu, L. O. Jolaoso and O. T. Mewomo, An inertial forward-backward splitting method for approximating solutions of certain optimization problem, J. Nonlinear Funct. Anal., 2020 (2020), 1-20.

H. A. Abass, c. Izuchukwu and K. O. Aremu, A common solution of family of minimization and fixed point problem for multi-valued type-one demicontractive-type mappings, Adv. Nonlinear Var. Inequal., 21 (2018), 94–108.

H. A. Abass, C. C. Okeke and O. T. Mewomo, On split equality mixed equilibrium and fixed point problems of generalized ki-strictly pseudo-contractive multivalued mappings, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 25 (2018), 369–395.

F. Akutsah, H. A. Abass, A. A. Mebawondu and O. K. Narain, On split generalized mixed equilibrium and fixed point problems of an infinite family of quasi-nonexpansive multivalued mappings in real Hilbert spaces, Asian Eur. J. Math. 15 (2021), 1–20.

P. N. Anh, H. T. C. Thach and J. K. Kim, Proximal-like subgradient methods for solving multi-valued variational inequalities, Nonlinear Funct. Anal. Appl.,25 (2020), 437-451.

M. Eslamian and A. Kamandi, A novel algorithm for approximating common solution of a system of monotone inclusion problems and common fixed point problem, J. Ind. Manag. Optim., 19 (2021), 1-22.

M. A. Olona and O. K. Narain, Iterative method for solving finite families of variational inequality and fixed point problems of certain multi-valued mappings, Nonlinear Funct. Anal. Appl., 27 (2022), 149-167.

P. Peeyada, R. Suparatulatorn, W. Cholamjiak, An inertial Mann forward-backward split28 ting algorithm of variational inclusion problems and its applications, Chaos, Solitons and Fractals 158 (2022), 1-7.

H. K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc., 66 (2002),240-256.

K. Afassinou, O.K. Narain and O. E. Otunuga, Iterative algorithm for approximating so2 lutions of split monotone variational inclusion, variational inequality and fixed point prob3 lems in real Hilbert spaces, Nonlinear Funct. Anal. Appl., 25 (2020), 491-510.

B. Lemaire, Which fixed point does the iteration method select? In: Recent Advances in Optimization, Springer, Berlin, Heidelberg, 1997.

C. E. Chidume, Geometric properties of Banach spaces and nonlinear spaces and nonlinear iterations Lecture Notes in Mathematics, Springer, London, 2009.

B. Tan and S. Y. Cho, Strong convergence of inertial forward–backward methods for solving monotone inclusions, Appl. Anal. 101(2021), 1-29.

C. E. Chidume and J. N. Ezeora, Krasnoselskii-type algorithm for family of multi-valued strictly pseudo-contractive mappings, J. Fixed Point Theory Appl., 2014 (2014), 1-7.

P. E. Mainge, A hybrid extragradient-viscosity method for monotone operators and fixed ´ point problems, SIAM J Control Optim. 47 (2008), 1499-1515.