New studies on a family of $q$-weighted Bergman spaces on the unit disk and applications
Main Article Content
Abstract
In this paper, we give a family of $q$-weighted
Bergman spaces
$\left\{\mathcal{A}_{{\alpha,n,q}}\right\}_{n\in\N}$ which
satisfies the continuous inclusion
$\mathcal{A}_{{\alpha,n,q}}\subset...\subset\mathcal{A}_{{\alpha,1,q}}\subset
\mathcal{A}_{{\alpha,0,q}}=\mathcal{A}_{{\alpha,q}}$, where
$\mathcal{A}_{{\alpha,q}}$ the $q$-weighted Bergman space.
Moreover, a more general uncertainty inequality of the
Heisenberg-type for the space $\mathcal{A}_{{\alpha,n,q}}$ is
given by considering the operators
$\nabla_{\alpha,n,q}:=\nabla^n_{\alpha,q}$ and
$L_{\alpha,n,q}:=L^n_{\alpha,q}$. Also, we study on
$\mathcal{A}_{{\alpha,q}}$ the $q$-Toeplitz operators, the
$q$-Hankel operators and the $q$-Berezin operators. Finally, an
application of the theory of extremal function and reproducing
kernel of Hilbert space is given and we use it to establish the
extremal function associated to an bounded linear operator
$T:\mathcal{A}_{{\alpha,q}}\rightarrow H$, for any Hilbert space
$H$. As application, we come up with some results regarding the
extremal functions associated to the difference operator
$Tf(z):=\frac{1}{z}(f(z)-f(0))$ and
$Tf(z):=\frac{1}{1+q}(f(z)-f(-z)).$
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
S. D. Arazy, S. D. Fisher, and J. Peetre, Hankel operators on weighted Bergman spaces,
Amer. J. Math. 110 (1988), no. 6, 9891053.
P. Busch, P. Lahti, R. F. Werner: Heisenberg uncertainty for qubit measurements. Phys. Rev.
A. 89(1), 012129 (2014)
M. Cowling, J. F. Price: Bandwidth versus time concentration: the HeisenbergPauliWeyl
inequality. SIAM J. Math. Anal. 15(1), 151165 (1984)
Donoho, D.L., Stark, P.B.: Uncertainty principles and signal recovery. SIAM J. Appl. Math.
(3), 906 931 (1989)
A. Essadiq, A. Ghanmi and A.Intissar, A q-analogue of the weighted Bergman space on the
disk and associated second q-Bargmann transform. J. Math. Anal. Appl. 443 (2016) 1311–
G. Folland, Harmonic Analysis on Phase Space, Annals of Mathematics Studies, vol 122.
Princeton University Press, Princeton (1989)
Gallardo-Guti´errez, E.A., Partington, J.R., Segura, D.: Cyclic vectors and invariant subspaces
forBergman and Dirichlet shifts. J. Oper. Theory 62(1), 199214 (2009)
H. Hedenmalm, Korenblum, B., Zhu, K.: Theory of Bergman Spaces. Springer, New York
(2000).
G. Gasper and M. Rahman, Basic hypergeometric series, 2nd edn. Cambridge University
Press, 2004.
J. Hilgevoord: The uncertainty principle for energy and time. Am. J. Phys. 64(12), 14511456
(1996)
F.H. Jackson, A generalization of the function Γ(n) and xn, Proc. R. Soc. Lond. 74 (1904)
–72.
S. Janson, Hankel operators between weighted Bergman spaces, Ark. Mat. 26(1988), no. 2,
V.G. Kac and P. Cheung, P., Quantum Calculus. Springer, NewYork (2002)
B. D. MacCluer and J. H. Shapiro, Angular derivatives and compact composition operators
on the Hardy and Bergman spaces, Canad. J. Math. 38 (1986), no. 4, 878906.
A. Nemri: On a q-best approximation formulas for the L2-multiplier operators and applications.
Res. Math. 9 (2022), no. 1, Paper No. 2066812, 12 pp.
A. Nemri: Heisenberg-type uncertainty principle for the second q-Bargmann transform on
the unit disk. Cubo 27 (2025), no. 1, 55–73.
A. Nemri, and F. Soltani: Analytical approximation formulas in quantum calculus. Math.
Mech. Solids 22 (2017), no. 11, 2075–2090.
D. Sen: The Uncertainty relations in quantum mechanic. Curr. Sci. 107(2), 203218 (2014)
F. Soltani: Uncertainty principles of Heisenberg type for the Bargmann transform. Afr. Mat.
(2021), no. 7-8, 1629–1643.
K. Zhu: Operator Theory in Function Spaces. Marcel Dekker, New York (1990).