Global existence and quenching for a damped hyperbolic MEMS equation with the fringing field

Tosiya Miyasita

Abstract


We study a damped hyperbolic MEMS equation with the fringing field.It arises in the Micro-Electro Mechanical System(MEMS) devices. We give some criteria for global existence and quenching of the solution.First we establish a time-local solution by a contraction mapping theorem. This procedure is standard.Next we show that there exists a global solution for the small parameter and initial value. Finally, we deal with the quenching result for the large parameter.

Keywords


MEMS; damped hyperbolic; fringing field; local solution; global solution; quenching

Full Text:

PDF

References


H. Brezis, Analyse fonctionnelle,Masson, Paris, 1983.

C. Y. Chan and K. K. Nip, On the blow-up of $vert u_{tt} vert$ at quenching for semilinear Euler-Poisson-Darboux equations, Mat. Apl. Comput.,14(1995),185--190.

P. H. Chang and H. A. Levine, The quenching of solutions of semilinear hyperbolic equations, SIAM J. Math. Anal., 12(1981),893--903.

J. Davila and J. Wei, Point ruptures for a MEMS equation with fringing field,Comm. Partial Differential Equations, 37(2012),1462--1493.

P. Esposito, Compactness of a nonlinear eigenvalue problem with a singular nonlinearity, Commun. Contemp. Math.,10(2008),17--45.

P. Esposito and N. Ghoussoub, Uniqueness of solutions for an elliptic equation modeling MEMS, Methods Appl. Anal., 15(2008),341--353.

P. Esposito, N. Ghoussoub and Y. Guo, Compactness along the branch of semistable and unstable solutions for an elliptic problem with a singular nonlinearity, Comm. Pure Appl. Math., 60(2007),1731--1768.

P. Esposito, N. Ghoussoub and Y. Guo, Mathematical analysis of partial differential equations modeling electrostatic MEMS, Courant Lecture Notes in Mathematics,

, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2010.

G. Flores, G. Mercado, J. A. Pelesko and N. Smyth, Analysis of the dynamics and touchdown in a model of electrostatic MEMS, SIAM J. Appl. Math.,67(2006/07),

--446.

M. Fukunishi and T. Watanabe, Variational approach to MEMS model with fringing field, J. Math. Anal. Appl., 423(2015),1262--1283.

N. Ghoussoub and Y. Guo, On the partial differential equations of electrostatic MEMS devices: stationary case, SIAM J. Math. Anal., 38(2006/07), 1423--1449.

N. Ghoussoub and Y. Guo, On the partial differential equations of electrostatic MEMS devices. II. Dynamic case, NoDEA Nonlinear Differential Equations Appl.,15(2008), 115--145.

J.-S. Guo, Quenching problem in nonhomogeneous media, Differential Integral Equations, 10(1997), 1065-1074.

J.-S. Guo, B. Hu and C.-J. Wang, A nonlocal quenching problem arising in a micro-electro mechanical system, Quart. Appl. Math.,67(2009),725--734.

J.-S. Guo and B.-C. Huang, Hyperbolic quenching problem with damping in the micro-electro mechanical system device, Discrete Contin. Dyn. Syst. Ser. B, 19(2014),419--434.

J.-S. Guo and N. I. Kavallaris, On a nonlocal parabolic problem arising in electrostatic MEMS control, Discrete Contin. Dyn. Syst.,32(2012),1723--1746.

J.-S. Guo and P. Souplet, No touchdown at zero points of the permittivity profile for the MEMS problem, SIAM J. Math. Anal.,47(2015),614--625.

Y. Guo, On the partial differential equations of electrostatic MEMS devices. III. Refined touchdown behavior, J. Differential Equations, 244(2008), 2277--2309.

Y. Guo, Global solutions of singular parabolic equations arising from electrostatic MEMS, J. Differential Equations, 245(2008),809--844.

K. M. Hui, The existence and dynamic properties of a parabolic nonlocal MEMS equation, Nonlinear Anal.,74(2011),298--316.

S. Kaplan, On the growth of solutions of quasi-linear parabolic equations, Comm. Pure Appl. Math.,16(1963), 305--330.

N. I. Kavallaris, A. A. Lacey, C. V. Nikolopoulos and D. E. Tzanetis, A hyperbolic non-local problem modelling MEMS technology, Rocky Mountain J. Math., 41(2011),

--534.

N. I. Kavallaris, T. Miyasita and T. Suzuki, Touchdown and related problems in electrostatic MEMS device equation, NoDEA Nonlinear Differential Equations Appl.,

(2008),363--385.

P. Laurenc cot and C. Walker, A fourth-order model for MEMS with clamped boundary conditions, Proc. Lond. Math. Soc. (3),109(2014),1435--1464.

H. A. Levine, Quenching, nonquenching, and beyond quenching for solution of some parabolic equations, Ann. Mat. Pura Appl.,155 (1989),243--260.

H. A. Levine and M. W. Smiley, Abstract wave equations with a singular nonlinear forcing term, J. Math. Anal. Appl., 103(1984),409--427.

C. Liang, J. Li and K. Zhang, On a hyperbolic equation arising in electrostatic MEMS, J. Differential Equations, 256(2014),503--530.

C. Liang and K. Zhang, Global solution of the initial boundary value problem to a hyperbolic nonlocal MEMS equation, Comput. Math. Appl., 67(2014), 549--554.

A. E. Lindsay and M. J. Ward, Asymptotics of some nonlinear eigenvalue problems for a MEMS capacitor. I. Fold point asymptotics, Methods Appl. Anal., 15(2008), 297--325.

Z. Liu and X. Wang, On a parabolic equation in MEMS with fringing field, Arch. Math. (Basel), 98(2012), 373--381.

T. Miyasita, Global existence of radial solutions of a hyperbolic MEMS equation with nonlocal term, Differ. Equ. Appl., 7(2015), 169--186.

F. K. N'gohisse and T. K. Boni, Quenching time of some nonlinear wave equations, Arch. Math. (Brno), 45 (2009), 115--124.

J. A. Pelesko, Mathematical modeling of electrostatic MEMS with tailored dielectric properties, SIAM J. Appl. Math., 62 (2001/02), 888--908.

J. A. Pelesko and D. H. Bernstein, Modeling MEMS and NEMS, Chapman & Hall/CRC, Boca Raton, FL, 2003.

J. A. Pelesko and T. A. Driscoll, The effect of the small-aspect-ratio approximation on canonical electrostatic MEMS models, J. Engrg. Math., 53(2005),239--252.

J. A. Pelesko and A. A. Triolo, Nonlocal problems in MEMS device control, J. Engrg. Math., 41(2001),345--366.

M. Reed, Abstract non-linear wave equations, Lecture Notes in Mathematics, 507, Springer-Verlag, Berlin-New York, 1976.

R. A. Smith, On a hyperbolic quenching problem in several dimensions, SIAM J. Math. Anal., 20(1989),1081--1094.

Q. Wang, Estimates for the quenching time of a MEMS equation with fringing field, J. Math. Anal. Appl.,405(2013),135--147.

J. Wei and D. Ye, On MEMS equation with fringing field, Proc. Amer. Math. Soc., 138(2010),1693--1699.

S. Zheng, Nonlinear parabolic equations and hyperbolic-parabolic coupled systems, Pitman Monographs and Surveys in Pure and Applied Mathematics, 76, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1995.




DOI: http://dx.doi.org/10.5556/j.tkjm.48.2017.2136

Sponsored by Tamkang University | ISSN 0049-2930 (Print), ISSN 2073-9826 (Online) | Powered by MathJax