Some new Gauss-Jacobi and Hermite-Hadamard type inequalities concerning $(n+1)$-differentiable generalized $((h_{1},h_{2});(\eta_{1},\eta_{2}))$-convex mappings

Artion Kashuri, Rozana Liko, Silvestru Sever Dragomir

Abstract


In this article, we first introduced a new class of generalized $((h_{1},h_{2});(\eta_{1},\eta_{2}))$-convex mappings and two interesting lemmas regarding Gauss-Jacobi and\\ Hermite-Hadamard type integral inequalities. By using the notion of generalized\\ $((h_{1},h_{2});(\eta_{1},\eta_{2}))$-convexity and the first lemma as an auxiliary result, some new estimates with respect to Gauss-Jacobi type integral inequalities are established. Also, using the second lemma, some new estimates with respect to Hermite-Hadamard type integral inequalities via Caputo $k$-fractional derivatives are obtained. It is pointed out that some new special cases can be deduced from main results of the article.

Keywords


Hermite-Hadamard inequality; Holder's inequality; Minkowski inequality; power mean inequality; Caputo k-fractional derivatives; m-invex.

Full Text:

PDF

References


S. M. Aslani, M. R. Delavar and S. M. Vaezpour,

Inequalities of Fejer type related to generalized convex functions with applications, Int. J. Anal. Appl.,16(1), (2018), 38-49.

F. Chen, A note on Hermite-Hadamard inequalities for products of convex functions via Riemann-Liouville fractional integrals, Ital. J. Pure Appl. Math., 33(2014), 299-306.

M. Adil Khan, Y.-M. Chu, A. Kashuri and R. Liko,

Hermite-Hadamard type fractional integral inequalities for $MT_{(r;g,m,varphi)}$-preinvex functions,

J. Comput. Anal. Appl., 26(8),(2019), 1487-1503.

Y.-M. Chu, M. Adil Khan, T. Ali and S. S. Dragomir,

Inequalities for $alpha$-fractional differentiable functions,

J. Inequal. Appl., 2017(93), (2017), pp. 12.

Y.-M. Chu, G. D. Wang and X. H. Zhang,

Schur convexity and Hadamard's inequality,

Math. Inequal. Appl., 13(4), (2010), 725-731.

Y.-M. Chu, M. Adil Khan, T. U. Khan and T. Ali,

Generalizations of Hermite-Hadamard type inequalities for $MT$-convex functions, J. Nonlinear Sci. Appl., 9(5), (2016), 4305-4316.

Z. Dahmani, On Minkowski and Hermite-Hadamard integral inequalities via fractional integration, Ann. Funct. Anal., 1(1), (2010), 51-58.

M. R. Delavar and S. S. Dragomir, On $eta$-convexity, Math. Inequal. Appl., 20, (2017), 203-216.

M. R. Delavar and M. De La Sen, Some generalizations of Hermite-Hadamard type inequalities, SpringerPlus, (2016), 5:1661.

S. S. Dragomir, J. Pevcaricand L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math., 21(1995), 335-341.

T. S. Du, J. G. Liao and Y. J. Li, Properties and integral inequalities of Hadamard-Simpson type for the generalized $(s,m)$-preinvex functions,

J. Nonlinear Sci. Appl., 9(2016), 3112-3126.

G. Farid and A. U. Rehman,

Generalizations of some integral inequalities for fractional integrals, Ann. Math. Sil., 31 (2017), pp. 14.

G. Farid, A. Javed and A. U. Rehman, On Hadamard inequalities for $n$-times differentiable functions which are relative convex via Caputo $k$-fractional derivatives, Nonlinear Anal. Forum, To appear.

M. E. Gordji, S. S. Dragomir and M. R. Delavar, An inequality related to $eta$-convex functions (II), Int. J. Nonlinear Anal. Appl., 6(2), (2016), 26-32.

M. E. Gordji, M. R. Delavar and M. De La Sen, On $varphi$-convex functions,J. Math. Inequal., Wiss 10(1), (2016), 173-183.

A. Kashuri and R. Liko, On Hermite-Hadamard type inequalities for generalized $(s,m,varphi)$-preinvex functions via $k$-fractional integrals, Adv. Inequal. Appl., 6(2017), 1-12.

A. Kashuri and R. Liko, Generalizations of Hermite-Hadamard and Ostrowski type inequalities for $MT_{m}$-preinvex functions, Proyecciones, 36(1), (2017), 45-80.

[

A. Kashuri and R. Liko, Hermite-Hadamard type fractional integral inequalities for generalized $(r;s,m,varphi)$-preinvex functions, Eur. J. Pure Appl. Math., 10(3), (2017), 495-505.

A. Kashuri and R. Liko, Hermite-Hadamard type fractional integral inequalities for twice differentiable generalized $(s,m,varphi)$-preinvex functions,

Konuralp J. Math., 5(2), (2017), 228-238.

A. Kashuri and R. Liko, Hermite-Hadamard type inequalities for generalized $(s,m,varphi)$-preinvex functions via $k$-fractional integrals, Tbil. Math. J., 10(4), (2017), 73-82.

A. Kashuri and R. Liko, Hermite-Hadamard type fractional integral inequalities for $MT_{(m,varphi)}$-preinvex functions, Stud. Univ. Babec{s}-Bolyai, Math., 62(4), (2017), 439-450.

A. Kashuri and R. Liko, Hermite-Hadamard type fractional integral inequalities for twice differentiable generalized beta-preinvex functions,

J. Fract. Calc. Appl., 9(1), (2018), 241-252.

M. Adil Khan, T. Ali, S. S. Dragomir and M. Z. Sarikaya, Hermite-Hadamard type inequalities for conformable fractional integrals, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matematicas, (2017), doi:10.1007/s13398-017-0408-5.

M. Adil Khan, Y.-M. Chu, A. Kashuri, R. Liko and G. Ali, New Hermite-Hadamard inequalities for conformable fractional integrals, J. Funct. Spaces, 2018, Article ID 6928130, pp. 9.

M. Adil Khan, Y.-M. Chu, T. U. Khan and J. Khan, Some new inequalities of Hermite-Hadamard type for $s$-convex functions with applications, Open Math., 15, (2017), 1414-1430.

M. Adil Khan, Y. Khurshid, T. Ali and N. Rehman, Inequalities for three times differentiable functions, J. Math., Punjab Univ., 48(2), (2016), 35-48.

M. Adil Khan, Y. Khurshid and T. Ali, Hermite-Hadamard inequality for fractional integrals via $eta$-convex functions, Acta Math. Univ. Comenianae, 79(1), (2017), 153-164.

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Math. Stud., 204, Elsevier, New York-London, (2006).

W. Liu, New integral inequalities involving beta function via $P$-convexity, Miskolc Math. Notes, 15(2), (2014), 585-591.

W. Liu, W. Wen and J. Park, Ostrowski type fractional integral inequalities for $MT$-convex functions, Miskolc Math. Notes, 16(1), (2015), 249-256.

W. Liu, W. Wen and J. Park, Hermite-Hadamard type inequalities for $MT$-convex functions via classical integrals and fractional integrals, J. Nonlinear Sci. Appl., 9 (2016), 766-777.

C. Luo, T. S. Du, M. Adil Khan, A. Kashuri and Y. Shen, Some $k$-fractional integrals inequalities through generalized $lambda_{phi m}$-$MT$-preinvexity,

J. Comput. Anal. Appl., 27(4), 690-705, 2019.

M. Matloka, Inequalities for $h$-preinvex functions, Appl. Math. Comput., 234, (2014), 52-57.

S. Mubeen and G. M. Habibullah, $k$-Fractional integrals and applications, Int. J. Contemp. Math. Sci., 7(2012), 89-94.

M. A. Noor, K. I. Noor, M. U. Awan and S. Khan, Hermite-Hadamard inequalities for $s$-Godunova-Levin preinvex functions,J. Adv. Math. Stud., 7(2), (2014), 12-19.

O. Omotoyinbo and A. Mogbodemu, Some new Hermite-Hadamard integral inequalities for convex functions, Int. J. Sci. Innovation Tech., 1(1), (2014), 1-12.

M. E. Ozdemir, E. Set and M. Alomari, Integral inequalities via several kinds of convexity, Creat. Math. Inform., 20(1), (2011), 62-73.

C. Peng, C. Zhou and T. S. Du, Riemann-Liouville fractional Simpson's inequalities through generalized $(m,h_1,h_2)$-preinvexity, Ital. J. Pure Appl. Math., 38, (2017), 345-367.

R. Pini, Invexity and generalized convexity, Optimization, 22, (1991), 513-525.

E. Set and A. Gozpinar, A study on Hermite-Hadamard type inequalities for $s$-convex functions via conformable fractional integrals Submitted.

E. Set, A. Gozpinar and J. Choi, Hermite-Hadamard type inequalities for twice differentiable $m$-convex functions via conformable fractional integrals,

Far East J. Math. Sci., 101(4), (2017), 873-891.

E. Set, S. S. Karatacs, and M. Adil Khan, Hermite-Hadamard type inequalities obtained via fractional integral for differentiable $m$-convex and $(alpha,m)$-convex functions, Int. J. Anal., 2016,$ Article ID 4765691, 8 pages.

E. Set, M. Z. Sarikaya and A. Gozpinar, Some Hermite-Hadamard type inequalities for convex functions via conformable fractional integrals and related inequalities, Creat. Math. Inform., 26(2), (2017), 221-229.

H. N. Shi, Two Schur-convex functions related to Hadamard-type integral inequalities, Publ. Math. Debrecen, 78(2), (2011), 393-403.

D. D. Stancu, G. Coman and P. Blaga, Analizua numericua si teoria aproximuarii, Cluj-Napoca: Presa Universitarua Clujeanua., 2,(2002).

M. Tuncc, E. Gov and U. Sanal, On $tgs$-convex function and their inequalities, Facta Univ. Ser. Math. Inform., 30(5), (2015), 679-691.

S. Varovsanec, On $h$-convexity, J. Math. Anal. Appl., 326(1), (2007), 303-311.

H. Wang, T. S. Du and Y. Zhang, $k$-fractional integral trapezium-like inequalities through $(h,m)$-convex and $(alpha,m)$-convex mappings, J. Inequal. Appl., 2017(311), (2017), pp. 20.

Y. Wang, S. H. Wang and F. Qi, Simpson type integral inequalities in which the power of the absolute value of the first derivative of the integrand is $s$-preinvex,

Facta Univ. Ser. Math. Inform., 28(2), (2013), 151-159.

T. Weir and B. Mond, Preinvex functions in multiple objective optimization,J. Math. Anal. Appl., 136, (1988), 29-38.

X. M. Zhang, Y. M. Chu and X. H. Zhang, The Hermite-Hadamard type inequality of $GA$-convex functions and its applications, J. Inequal. Appl., (2010), Article ID 507560, pp. 11.

Y. Zhang, T. S. Du, H. Wang, Y. J. Shen and A. Kashuri, Extensions of different type parameterized inequalities for generalized $(m,h)$-preinvex mappings via $k$-fractional integrals, J. Inequal. Appl., 2018(49), (2018), pp. 30.




DOI: http://dx.doi.org/10.5556/j.tkjm.49.2018.2772

Sponsored by Tamkang University | ISSN 0049-2930 (Print), ISSN 2073-9826 (Online) | Powered by MathJax