A subclass of close-to-convex functions

Main Article Content

Zheng- Lv Zhang
Qing- Hua Xu

Abstract

In this paper, we introduce and investigate an interesting subclass $\mathcal {J}_\alpha(h)$ of analytic and close-to-convex function in the open unit disk D. several coefficient inequalities, growth, and distortion theorem for this class are proved. The various results presented here would generalize many know results.

Article Details

How to Cite
Zhang, Z.-. L., & Xu, Q.-. H. (2013). A subclass of close-to-convex functions. Tamkang Journal of Mathematics, 44(1), 83–89. https://doi.org/10.5556/j.tkjm.44.2013.1008
Section
Papers
Author Biographies

Zheng- Lv Zhang

College ofMathematics and Information Science, JiangXi Normal University, NanChang 330027, China.

Qing- Hua Xu

College of Mathematics and Information Science, JiangXi Normal University, NanChang 330027, China.

References

H. R. Abdel-Gawad and D. K. Thomas, A subclass of close-to-convex functions, Publications De L'Institut Mathematique, Nouvelle serie tome, 49(63)(1991), 61--66.

B. S. Mehrok and G. Singh, A subclass of close-to-convex functions, Int. J. Math. Analysis, 4(2010),1319--1327.

H. M. Srivastava, X. Q. Hua and W. G. Ping, Cofficient estimates for certain subclasses of spiral-like functions of complex order, 23(2010), 763--768.

X. Q. Hua, H. M. Srivastava and Z. Li, A certain subclass of analytic and close-to-convex functions, Appl. Math. Lett., 24(2011), 396--401.

C. Selvaraj, A subclass of close-to-convex functions, Southeast Asian Bulletin of Mathematics, 28(2004), 113--123.

W. Rogosinski, On the coefficients of subordinate functions, Proc. London Math. Soc. (ser. 2) 48 (1943), 48--82.

M. S. Robertson, On the theory of univalent functions, Ann. Math. 1936, 7(1936), 374--408

G. Kohr and I. Graham, Geometric function theory in one and higher dimensions, New York: Marcel Dekker, Inc. 56 (2003),54--57.