A subclass of close-to-convex functions
Main Article Content
Abstract
Article Details
References
H. R. Abdel-Gawad and D. K. Thomas, A subclass of close-to-convex functions, Publications De L'Institut Mathematique, Nouvelle serie tome, 49(63)(1991), 61--66.
B. S. Mehrok and G. Singh, A subclass of close-to-convex functions, Int. J. Math. Analysis, 4(2010),1319--1327.
H. M. Srivastava, X. Q. Hua and W. G. Ping, Cofficient estimates for certain subclasses of spiral-like functions of complex order, 23(2010), 763--768.
X. Q. Hua, H. M. Srivastava and Z. Li, A certain subclass of analytic and close-to-convex functions, Appl. Math. Lett., 24(2011), 396--401.
C. Selvaraj, A subclass of close-to-convex functions, Southeast Asian Bulletin of Mathematics, 28(2004), 113--123.
W. Rogosinski, On the coefficients of subordinate functions, Proc. London Math. Soc. (ser. 2) 48 (1943), 48--82.
M. S. Robertson, On the theory of univalent functions, Ann. Math. 1936, 7(1936), 374--408
G. Kohr and I. Graham, Geometric function theory in one and higher dimensions, New York: Marcel Dekker, Inc. 56 (2003),54--57.