Normal criterion and shared values by derivatives of meromorphic functions

Main Article Content

Qian Lu
Qilong Liao

Abstract

Let $\mathscr{F}$ be a family of meromorphic functions in a plane domain $D$. If for every function $f\in\mathscr{F}$, all of whose zeros have,at least,multiplicity $l$ and poles have, at least,multiplicity $p$, and for each pair functions $f$ and $g$ in $\mathscr{F}$, $f^{(k)}$ and $g^{(k)}$ share 1 in $D$, where $k,l,$ and $p$ are three positive integer satisfying $\frac{k+1}{l}+\frac{1}{p}\leq 1$, then $\mathscr{F}$ is normal.

Article Details

How to Cite
Lu, Q., & Liao, Q. (2014). Normal criterion and shared values by derivatives of meromorphic functions. Tamkang Journal of Mathematics, 45(2), 109–117. https://doi.org/10.5556/j.tkjm.45.2014.1014
Section
Papers
Author Biographies

Qian Lu

Department ofMathematics, Southwest University of Science and Technology,Mianyang 621010, P.R. China.

Qilong Liao

E-mail:Department ofMaterial Science and Engineer,SouthwestUniversity of Science and Technology,Mianyang 621010, P.R. China.

References

M.L. Fang and L.Zalcman, A note on normal families and sharing values, J. Aust. Math. Soc., 76 (2004), 151--150.

Y.X. Gu, An normal criterion of meromorphic functions, Sci. Sinica, Math., Issue I (1979), 267--274.

W.K. Hayman, Picard values of meromorphic functions and the derivatives, Ann. Math., 70 (1959), 9--42.

------, Research problems in function theory, Athlone Press, London, 1967.

J.M.Chang, Normality and quasinormality of zero-free meromorphic functions, Manuscript.

Yuntong Li, Normal families of meromorphic functions with multiple zeros, J. Math. Anal. Appl., 381 (2011), 344--351.

Yuntong Li and Yongxing Gu, On normal families of meromorphic functions, J. Math. Anal. Appl., 354 (2009), 421--425.

J.M. Qi and T.Y. Zhu, Some normal families of meromorphic functions,Abstr. Appl. Anal., 2010 (2010), Arctile ID 147878, 4 pp., doi:10.1155/2010/147878.

Y.F. Wang and M.L. Fang, Picard values and normal families of meromorphic functions with multiple zeros, Acta Math. Sinica, Chinese Series, 41 (1998), 743--748.

L.Zalcman, Normal families:new perspectives., Bull.Amer.Math.Soc.New Seri., 35(1998), 215--230.