Lp−Winterniz problem on firey projection of convex bodies

Main Article Content

Tong Yi MA
Li Li Zhang

Abstract

For $p\geq 1$, Lutwak, Yang and Zhang introduced the concept of $p$-projection body, and Lutwak introduced the concept of $L_{p}-$ affine surface area of convex body. In this paper, we develop the Minkowski-Funk transform approach in the $L_{p}$-Brunn-Minkowski theory. We consider the question of whether $\Pi_{p}K\subseteq \Pi_{p}L$ implies $\Omega_{p}(K) \leq \Omega_{p}(L)$, where $\Pi_{p}K$ and $\Omega_{p}K$ denotes the $p-$projection body of convex body $K$ and the $L_{p}-$affine surface area of convex body $K$, respectively. We also formulate and solve a generalized $L_{p}-$Winterniz problem for Firey projections.

Article Details

How to Cite
MA, T. Y., & Zhang, L. L. (2014). Lp−Winterniz problem on firey projection of convex bodies. Tamkang Journal of Mathematics, 45(2), 179–193. https://doi.org/10.5556/j.tkjm.45.2014.1017
Section
Papers
Author Biographies

Tong Yi MA

College ofMathematics and Statistics, Hexi University, Zhangye, Gansu 734000, P.R. China.

Li Li Zhang

College ofMathematics and Statistics, NorthwestNormal University, Lanzhou Gansu 730070, P.R. China

References

W. Blaschke, Vorlesungenuber Differentialgeometric, II:Affine Differentialgeometrie, Springer, Berlin, 1923.

L. Dor, Potentials and isometric embeddings in $L_{1}$, Israel J. Math., 24(1976), 260--268.

R. J. Gardner, Geometric tomography, Encyclopedia of Mathematics and its Application 58, Cambridge University Press, New York, 1995.

A. Koldobsky, Fourier analysis in convex geometry, Mathematical Surveys and Monographs, American Mathematical Society, Providence RI, 2005.

A. Koldobsky, Positive definite distributions and subspaces of $L_{-p}$ with applications to stable processes, Canad. Math. Bull., 42(1999), 42(3):344--353.

A. Koldobsky, Generalized Levy representation of norms and isometric embeddings into $L_{p}$ spaces, Ann. Inst. H. Poincare Ser. B.,28(1992), 335--353.

E. Lutwak, Mixed affine surface area, J. Math. Anal. Appl., 125(1987),351--360.

E. Lutwak, Centroid bodies and dual mixed volumes, Proc. London Math.Soc., 60(1990), 365--391.

E. Lutwak, The Brunn-Minkowski-Firey theory II: Affine and geominimal surface area, Adv. Math., 118(1996), 244--294.

E. Lutwak, D. Yang and G. Zhang, $L_{p}$ affine isoperimetric inequalities, J. Differential Geom., 56(2000), 111--132.

E. Lutwak, The Brunn-Minkowski-Firey Theory i : Mixed volumes and the Minkowski Problem, J. Differential Geom., 38(1993), 131--150.

E. Lutwak, Extended affine surface area, Adv. Math., 85(1991), 39--68.

E. Lutwak, On some affine isoperimetric inequalities, J. Differential Geom., 23(1986), 1-13.

E. Lutwak, D. Yang and G. Zhang, On the $L_{p}-$Minkowski problem, Trans. Amer. Math. Soc., 356(2004), 4359--4370.

K. Leichtweiss, Bemerkungen zur Definition einer erweiterten Affinoberflache von E.Lutwak, Manuscripta Math., 65(1989), 181--197.

C. M. Petty, Affine isoperimetric problems}, Ann. New York Acad. Sci., 440(1985), 113--127.

B. Rubin, Intersection bodies and generalized cosine transforms, Advances in Mathematics, 218(2008),218(3):696--727.

In:http://arxiv.org/PS_cache/arxiv/pdf/0704/0704.0061v2.pdf.

B. Rubin, Inversion of fractional integrals related to the spherical Radon transform, Journal of Functional Analysis, 157(1998), 470--487.

D. Ryabogin and A. Zvavitch, The Fourier transform and Firey projections of convex bodies, Indiana Univ. Math. J., 53(2004), 667--682.

R. Schneider, Convex Bodies: The Brunn-Minkowski theory, Cambridge Univ.Press, Cambridge, 1993.