Some inequalities in Pseudo-Hilbert spaces
Main Article Content
Abstract
Article Details
References
A. H. Ansari and M. S. Moslehian, Refinements of reverse triangle inequalities in inner product spaces, J. Inequal. Pure Appl. Math.,6 (2005), art 64, 12 pp.
S. A. Chobanyan and A. Weron, Banach-space-valued stationary processes and their linear prediction, Dissertations Math.,125, (1975), 1--45.
L. Ciurdariu, Classes of linear operators on pseudo-Hilbert spaces and applications, Part I, Monografii matematice, Tipografia Universitatii de Vest din Timisoara, 2006.
S. S. Dragomir, On some inequalities in normed algebras, Journal of inequalities in pure and applied mathematics, 9 (2008), Issue 1, Art. 5, 10 pp.
S. S. Dragomir, A generalization of the Pecaric-Rajic inequality in normed linear spaces, Preprint, RGMIA Res. Rep. Coll.,10 (2007), Art.3, ONLINE:http://rmgia.vu.edu.au/v10n3.html].
C. F. Dunkl and K. S. Willams, A simple norm inequality, Amer. Math. Monthly,71 (1964), 53--54.
M. Khosravi, H. Mahyar and M. S. Moslehian, Reverse triangle inequality in Hilbert $C^*$-modules, J. Inequal. Pure Appl. Math.,10 (2009), art. 110, 11 pp.
R. M. Loynes, Linear operators in $VH$-spaces, Trans. American Math. Soc.,116 (1965), 167--180.
R. M. Loynes, On generalized positive definite functions, Proc. London Math. Soc,3 (1965),373--384.
L. Maligranda, Simple norm inequalities, Amer. Math. Monthly,113 (2006), 256--260.
P. R. Mercer, The Dunkl-Williams inequality in an inner-product space, Math. Inequal. Appl.,10(2007), 447--450.
J. Pecaric and R. Rajic, The Dunkl-Wiliams inequality with n elements in normed linear spaces, Math. Ineq. Appl.,10(2007), 461--470.
A. Weron and S. A. Chobanyan, Stochastic processes on pseudo-Hilbert spaces (russian), Bull. Acad. Polon., Ser. Math. Astr. Phys., tom XX1, 9 (1973), 847--854.
A. Weron, Prediction theory in Banach spaces, Proc. of Winter School on Probability, Karpacz, Springer Verlag, London, 1975, 207-228.