A note on essential finite indecomposability and thickness in primary abelian groups
Main Article Content
Abstract
Article Details
References
K. Benabdallah and R. Wilson, Thick groups and essentially finitely indecomposable groups, Can. J. Math. (3), 30(1978), 650--654.
D. Cutler and J. Irwin, Essentially finitely indecomposable abelian p-groups, Quaestiones Math., 9(1986), 135--148.
D. Cutler and C. Missel, The structure of C- decomposable p(omega +n)-projective abelian p-groups, Commun. Algebra, 12(1984), 301--319.
P. Danchev, Commutative group algebras of thick abelian p-groups, Indian J. Pure Appl. Math. (6), 36(2005), 319--328.
P. Danchev, Notes on essentially finitely indecomposable nonthick primary abelian groups, Commun. Algebra (4), 36 (2008), 1509--1513.
M. Dugas and J. Irwin, On thickness and decomposability of abelian p-groups, Israel J. Math. (2-3), 79(1992), 153--159.
P. Danchev and P. Keef, Nice elongations of primary abelian groups, Publ. Mat. (2), 54 (2010), 317--339.
P. Danchev and P. Keef, Nice bases and thickness in primary abelian groups, Rocky Mountain J. Math. (4), 41 (2011), 1127--1149.
L. Fuchs, Infinite Abelian Groups, volumes I and II, Acad. Press, New York and London, 1970 and 1973.
L. Fuchs, Vector spaces with valuations, J. Algebra, 35 (1975), 23--38.
J. Irwin and P. Keef, Primary abelian groups and direct sums of cyclics, J. Algebra, 159 (1993), 387--399.
P. Keef, Primary abelian groups admitting only small homomorphisms, Commun. Algebra (10), 23 (1995), 3615--3626.
P. Keef, Partially decomposable primary abelian groups and the generalized core class property, in Models, Modules and Abelian Groups, Walter de Gruyter, Berlin and New York, 2008, 289--299.
P. Keef, On subgroups of totally projective primary abelian groups and direct sums of cyclic groups, Contemp. Math.,576 (2012), 205--216.
R. Pierce, Homomorphisms of Primary Abelian Groups, in Topics in Abelian Groups, Scott Foresman and Co. (1963), 215--310.