An inverse spectral problem for non-selfadjoint Sturm-Liouville operators with nonseparated boundary conditions
Main Article Content
Abstract
Article Details
References
V. A. Marchenko, Sturm-Liouville operators and their applications “Naukova Dumka", Kiev, 1977; English transl., Birkhauser, 1986.
B. M. Levitan, Inverse Sturm-Liouville problems. Nauka, Moscow, 1984; English transl., VNU Sci.Press, Utrecht,1987.
G. Freiling and V. A. Yurko, Inverse Sturm-Liouville Problems and their Applications. NOVA Science Publishers, New York, 2001.
V. A. Yurko, Method of Spectral Mappings in the Inverse Problem Theory, Inverse and Ill-posed Problems Series. VSP, Utrecht, 2002.
V. A. Marchenko and I. V. Ostrovskii, A characterization of the spectrum of the Hill operator, Math.USSR-Sb. 26(1975), 4, 493--554.
O. A. Plaksina, Inverse problems of spectral analysis for the Sturm-Liouville operators with nonseparated boundary conditions, Math. USSR-Sb. 59(1988), 1, 1--23.
V. A. Yurko, textit{An inverse problem for second order differential operators with regular boundary conditions} Math. Notes 18 (1975), 3-4, 928--932.
V. A. Yurko, On an periodic problem, Diff. Equations and Theory of Functions, (Russian), Saratov Univ., Saratov, 1981, 109-115.
V. A. Yurko, On differential operators with nonseparated boundary conditions, Funct. Anal. and Appl. 28(1994), 295--297.
V. A. Yurko, The inverse spectral problem for differential operators with nonseparated boundary conditions, J. Math. Anal. Appl. 250(2000), 266--289.
G. Freiling and V. A. Yurko, On the stability of constructing a potential in the central symmetry case, Applicable Analysis 90(2011), 1819--1828.
M. Gasymov, I. M. Guseinov and I. M. Nabiev, An inverse problem for the Sturm-Liouville operator with nonseparated self-adjoint boundary conditions}, Sib. Mat. Zh. 31(1990), 46--54; English transl. in Siberian Math. J. 31, no.6 (1990),910--918.
I. M. Guseinov and I. M. Nabiev, Solution of a class of inverse Sturm-Liouville boundary value problems, Mat. Sb. 186(1995), 35--48; English transl.in Sb. Math. 186
(1995), 661--674.
S. A. Buterin, On inverse spectral problems for non-selfadjoint Sturm-Liouville operator on a finite interval, Journal of Math. Analysis and Appl. 335(2007), 739--749.
S. A. Buterin, Inverse problems for non-self-adjoint Sturm-Liouville operators, Schriftenreiche des Fachbereichs Mathematik, SM-DU-745, Universitaet Duisburg-Essen, 2012.
V. A. Tkachenko and J.-J. Sansuc, Characterization of the periodic and anti-periodic spectra of nonselfadjoint Hill's operators, Operator Theory, Advances and Appl. 98, 216--224, Birkhaeuser, Basel, 1997.
V. A. Yurko, Inverse problems for Sturm-Liouville operators on graphs with a cycle, Operators and Matrices, 2(2008), 543--553.
[ 18] V. A. Yurko, Recovering Sturm-Liouville operators from spectra on a graph with a cycle}, Matem. Sbornik 200(2009), 147--160; English transl. in Sbornik: Mathematics 200(2009), 1403--1415.
V. A. Yurko, On an inverse spectral problem for differential operators on a hedgehog-type graph}, Doklady Mathematics 79(2009), 250--254.
V. A. Yurko, Inverse problems for Sturm-Liouville operators on bush-type graphs}, Inverse Problems 2(2009), 105008, 14pp.
V. A. Yurko, Inverse spectral problems for differential operators on arbitrary compact graphs}, Journal of Inverse and Ill-Posed Proplems 18(2010), 245--261.
M. A. Naimark, Linear Differential Operators, 2nd ed., “Nauka", Moscow,1969; English transl. of 1st ed., Parts I, II, Ungar, New York, 1967, 1968.
V. A. Yurko, Recovering non-selfadjoint Sturm-Liouville operators with nonseparated boundary conditions, Schriftenreiche des Fachbereichs Mathematik, SM-DU-746, Universitaet Duisburg-Essen, 2012, 11pp.