An inverse spectral problem for non-selfadjoint Sturm-Liouville operators with nonseparated boundary conditions

Main Article Content

Vjacheslav Yurko

Abstract

Non-selfadjoint Sturm-Liouville operators on a finite interval with nonseparated boundary conditions are studied. We establish properties of the spectral characteristics and investigate an inverse problem of recovering the operators from their spectral data. For this inverse problem we prove a uniqueness theorem and provide a procedure for constructing the solution.

Article Details

How to Cite
Yurko, V. (2012). An inverse spectral problem for non-selfadjoint Sturm-Liouville operators with nonseparated boundary conditions. Tamkang Journal of Mathematics, 43(2), 289–299. https://doi.org/10.5556/j.tkjm.43.2012.1100
Section
Papers
Author Biography

Vjacheslav Yurko, Department ofMathematics, Saratov University, Astrakhanskaya 83, Saratov 410012, Russia.

Department of Mathematics

Saratov University

References

V. A. Marchenko, Sturm-Liouville operators and their applications “Naukova Dumka", Kiev, 1977; English transl., Birkhauser, 1986.

B. M. Levitan, Inverse Sturm-Liouville problems. Nauka, Moscow, 1984; English transl., VNU Sci.Press, Utrecht,1987.

G. Freiling and V. A. Yurko, Inverse Sturm-Liouville Problems and their Applications. NOVA Science Publishers, New York, 2001.

V. A. Yurko, Method of Spectral Mappings in the Inverse Problem Theory, Inverse and Ill-posed Problems Series. VSP, Utrecht, 2002.

V. A. Marchenko and I. V. Ostrovskii, A characterization of the spectrum of the Hill operator, Math.USSR-Sb. 26(1975), 4, 493--554.

O. A. Plaksina, Inverse problems of spectral analysis for the Sturm-Liouville operators with nonseparated boundary conditions, Math. USSR-Sb. 59(1988), 1, 1--23.

V. A. Yurko, textit{An inverse problem for second order differential operators with regular boundary conditions} Math. Notes 18 (1975), 3-4, 928--932.

V. A. Yurko, On an periodic problem, Diff. Equations and Theory of Functions, (Russian), Saratov Univ., Saratov, 1981, 109-115.

V. A. Yurko, On differential operators with nonseparated boundary conditions, Funct. Anal. and Appl. 28(1994), 295--297.

V. A. Yurko, The inverse spectral problem for differential operators with nonseparated boundary conditions, J. Math. Anal. Appl. 250(2000), 266--289.

G. Freiling and V. A. Yurko, On the stability of constructing a potential in the central symmetry case, Applicable Analysis 90(2011), 1819--1828.

M. Gasymov, I. M. Guseinov and I. M. Nabiev, An inverse problem for the Sturm-Liouville operator with nonseparated self-adjoint boundary conditions}, Sib. Mat. Zh. 31(1990), 46--54; English transl. in Siberian Math. J. 31, no.6 (1990),910--918.

I. M. Guseinov and I. M. Nabiev, Solution of a class of inverse Sturm-Liouville boundary value problems, Mat. Sb. 186(1995), 35--48; English transl.in Sb. Math. 186

(1995), 661--674.

S. A. Buterin, On inverse spectral problems for non-selfadjoint Sturm-Liouville operator on a finite interval, Journal of Math. Analysis and Appl. 335(2007), 739--749.

S. A. Buterin, Inverse problems for non-self-adjoint Sturm-Liouville operators, Schriftenreiche des Fachbereichs Mathematik, SM-DU-745, Universitaet Duisburg-Essen, 2012.

V. A. Tkachenko and J.-J. Sansuc, Characterization of the periodic and anti-periodic spectra of nonselfadjoint Hill's operators, Operator Theory, Advances and Appl. 98, 216--224, Birkhaeuser, Basel, 1997.

V. A. Yurko, Inverse problems for Sturm-Liouville operators on graphs with a cycle, Operators and Matrices, 2(2008), 543--553.

[ 18] V. A. Yurko, Recovering Sturm-Liouville operators from spectra on a graph with a cycle}, Matem. Sbornik 200(2009), 147--160; English transl. in Sbornik: Mathematics 200(2009), 1403--1415.

V. A. Yurko, On an inverse spectral problem for differential operators on a hedgehog-type graph}, Doklady Mathematics 79(2009), 250--254.

V. A. Yurko, Inverse problems for Sturm-Liouville operators on bush-type graphs}, Inverse Problems 2(2009), 105008, 14pp.

V. A. Yurko, Inverse spectral problems for differential operators on arbitrary compact graphs}, Journal of Inverse and Ill-Posed Proplems 18(2010), 245--261.

M. A. Naimark, Linear Differential Operators, 2nd ed., “Nauka", Moscow,1969; English transl. of 1st ed., Parts I, II, Ungar, New York, 1967, 1968.

V. A. Yurko, Recovering non-selfadjoint Sturm-Liouville operators with nonseparated boundary conditions, Schriftenreiche des Fachbereichs Mathematik, SM-DU-746, Universitaet Duisburg-Essen, 2012, 11pp.