Oscillation criterion for two-dimensional dynamic systems on time scales

Main Article Content

Taher Hassan

Abstract

The purpose of this paper is to prove oscillation criterion for dynamic system \begin{equation*} u^{\Delta }=pv,\qquad v^{\Delta }=-qu^{\sigma }, \end{equation*}% where $p>0$ and $q$ are rd-continuous functions on a time scale such that $% \sup \mathbb{T=\infty }$ without explicit sign assumptions on $q$ and also without restrictive conditions on the time scale $\mathbb{T}.$

Article Details

How to Cite
Hassan, T. (2012). Oscillation criterion for two-dimensional dynamic systems on time scales. Tamkang Journal of Mathematics, 44(3), 227–232. https://doi.org/10.5556/j.tkjm.44.2013.1189
Section
Papers
Author Biography

Taher Hassan

Department ofMathematics, Faculty of Science,Mansoura University,Mansoura, 35516, Egypt. Department ofMathematics, Faculty of Science, Hail University, KSA.

References

D. R. Anderson, Oscillation and nonoscillation criteria for two-dimensional time-scale systems of first-order nonlinear dynamic equations, Electron. J. Diff. Eqns, Vol 2009(2009), No. 24, 1--13.

M. Bohner, L. Erbe, and A. Peterson, Oscillation for nonlinear second order dynamic equations on a time scale, J. Math. Anal.Appl., 301 (2005), 491--507.

M. Bohner and A. Peterson, Dynamic Equation on Time Scales: AnIntroduction with Applications, Birkhauser, Boston, 2001.

M. Bohner and A. Peterson, editors, Advances in DynamicEquations on Time Scales, Birkhauser, Boston, 2003.

J. Baoguo, A new oscillation criterion for two-dimensional dynamic systems on time scales, Tamkang journal of Mathematics, 42(2011), 237--244.

S. Fu and M. Lin, Oscillation and nonoscillation criteria for linear dynamic equations on time scales, Computers and Mathematics with Applications, 59 (2010), 2552--2565.

C. Potzsche, Chain rule and invariance principle on measure chains, in: R. P. Agarwal, M. Bohner, D. O'Regan (Eds.), special Issue on "Dynamic Equations on Time Scales", J. Comput. Appl. Math., 141(2002), 249--254.