Preserving properties of subordination and superordination of analytic functions associated with a fractional differintegral operator

Authors

  • Jamal M. Shenan

DOI:

https://doi.org/10.5556/j.tkjm.45.2014.1332

Keywords:

Key words and phrases. Analytic function, multivalent function, fractional differintegral operator, subordination, Superordination.

Abstract

In this paper, we obtain some subordination and superordination-preserving results of analytic functions associated with the fractional differintegral operator $U_{0,z}^{\alpha ,\beta ,\gamma } $. Sandwich-type result involving this operator is also derived.

Author Biography

Jamal M. Shenan

Department ofMathematics, Alazhar University-Gaza, P. O. Box 1277, Gaza, Palestine.

References

M. K. Aouf and T. M. Seoudy, Some preserving subordination and superordination of the Liu--Owa integral operator, Complex Anal. Oper. Theory, in press doi:10.1007/s11785-011-0141-6.

M. K. Aouf and T. M. Seoudy, Some preserving subordination and superordination of analytic functions involving the Liu—Owa integral operator, Comput. Math. Appl. 62(2011), 3575-3580.

J. H. Choi, On differential subordinations of multivalent functions involving a certain fractional derivative operator, Int. J. Math. Math. Sci., doi: 10.1155/2010/952036.

S. M. Khainar and M. More, A subclass of uniformly convex functions associated with certain fractional calculus operator, IAENG International Journal of Applied Mathematics, 39(3)(2009), IJAM-39-07.

S. S. Miller and P. T. Mocanu, Differential subordinations and univalent functions}, Michigan Math. J., 28(2)(1981), 157--172.

S. S. Miller and P.T. Mocanu, Univalent solutions of Briot--Bouquet differential equations, J. Differential Equations, 56(3)(1985), 297--309.

S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Applications, in: Monographs and Textbooks in Pure and Applied Mathematics, vol. 225, Marcel Dekker, StateNew York, CityplaceBasel, 2000

S. S. Miller and P. T. Mocanu, Subordinants of differential superordinations, Complex Var. Theory Appl., 48(10) (2003), 815--826.

G. Murugusundaramoorthy, T. Rosy and M. Darus, A subclass of uniformly convex functions associated with certain fractional calculus operators, J. Inequal. Pure and Appl. Math., 6(3)(2005), Article 86, [online: http:jipam.vu.edu.au].

S. Owa, On the distortion theorems I, Kyungpook Math. J., 18(1978), 53-59.

S. Owa and H. M. Srivastava, Univalent and starlike generalized hypergeometric function, Canad. J. Math., 39(1987),1057--1077.

J. Patel and A. K. Mishra, On certain subclasses of multivalent functions associated with an extended fractional differintegral operator, J. Math. Anal. Appl., 332(2007), 109--122.

C. Pommerenke, Univalent Functions, Vandenhoeck and Ruprecht, Gotingen,1975.

M. Saigo, A certain boundary value problem for the Euler-Darboux equation, Math. Apon., 25(1979), 377--385.

M. Saigo, A remark on integral operators involving the Gauss hypergeometric functions, Math. Rep. Kyushu Univ. 11(1978), 135--143.

H. M. Srivastava and S. Owa (Eds.), Univalent Functions, Fractional Calculus, and Their Applications, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, placeStateNew York, 1989.

H. M. Srivastava and M. K. Aouf, A certain fractional derivative operator and its applications to a new class of analytic and multivalent functions with negative coefficients I, J. Math. Anal. Appl., 171(1992) 1--13.

Downloads

Published

2014-03-17

How to Cite

Shenan, J. M. (2014). Preserving properties of subordination and superordination of analytic functions associated with a fractional differintegral operator. Tamkang Journal of Mathematics, 45(1), 63-75. https://doi.org/10.5556/j.tkjm.45.2014.1332

Issue

Section

Papers