Generalization of some inequalities via Riemann-Liouville fractional calculus
Main Article Content
Abstract
Article Details
References
M. Bessenyei, The Hermite--Hadamard Inequality on Simplices, American Mathematical Monthly, 115 (2008), 339--345.
S. S. Dragomir and C. E. M. Pearce, Selected Topic on Hermite-Hadamard Inequalities and Applications, Melbourne and Adelaide, December, 2000.
R. Gorenflo and F. Mainardi, Fractional Calculus: Integral and Differential Equations of Fractional Order, Springer Verlag, Wien, 1997.
H. Kavurmaci and M. Avci, M. E. Ozdemir, New inequalities of Hermite-Hadamard type for convex functions with applications, arXiv: 1006.1593v1.
M. Mihai, Some Hermite-Hadamard type inequalities obtained via Riemann-Liouville fractional calculus. (submitted).
F.-C. Mitroi and C. I. Spiridon, Hermite-Hadamard type inequalities of convex functions with respect to a pair of quasi-arithmetic means, Math. Rep., 14 (2012)
C. P. Niculescu and L.-E. Persson, Convex Functions and their Applications. A Contemporary Approach, CMS Books in Mathematics vol. 23, Springer-Verlag, New York, 2006.
C. P. Niculescu, The Hermite-Hadamard inequality for log-convex functions, Nonlinear Analysis 75 (2012), 662--669.
M. Emin Ozdemir, A. Ekinci and A. Akdemir, Some new integral inequalities for functions whose derivatives of absolute values are convex and concave, RGMIA Research Report Collection, 15 (2012), Article 48, 12 pp.
S. Wcasowicz and A. Witkowski, On some inequality of Hermite-Hadamard type, Opuscula Math., 32(2012), 591--600.