On strong approximation by modified Meyer-K"onig and Zeller operators

  • L. Rempulska
  • M. Skorupka

Abstract

We introduce certain modified Meyer-K"onig and Zeller operators $ M_{n;r} $ in the space of  $r $-th times differentiable functions $ f $ and we study strong differences $ H_{n;r}^q(f) $ for them.

  This note is motivated by results on strong approximation connected with Fourier series ([7]).

Author Biographies

L. Rempulska
Institute of Mathematics, Poznan University of Technology, ul. Piotrowo 3A, 60-965 Poznan, Poland.
M. Skorupka
Institute of Mathematics, Poznan University of Technology, ul. Piotrowo 3A, 60-965 Poznan, Poland.
Published
2006-06-30
How to Cite
Rempulska, L., & Skorupka, M. (2006). On strong approximation by modified Meyer-K"onig and Zeller operators. Tamkang Journal of Mathematics, 37(2), 123-130. https://doi.org/10.5556/j.tkjm.37.2006.156
Section
Papers