On strong approximation by modified Meyer-K"onig and Zeller operators

Main Article Content

L. Rempulska
M. Skorupka

Abstract

We introduce certain modified Meyer-K"onig and Zeller operators $ M_{n;r} $ in the space of  $r $-th times differentiable functions $ f $ and we study strong differences $ H_{n;r}^q(f) $ for them.

  This note is motivated by results on strong approximation connected with Fourier series ([7]).

Article Details

How to Cite
Rempulska, L., & Skorupka, M. (2006). On strong approximation by modified Meyer-K"onig and Zeller operators. Tamkang Journal of Mathematics, 37(2), 123–130. https://doi.org/10.5556/j.tkjm.37.2006.156
Section
Papers
Author Biographies

L. Rempulska

Institute of Mathematics, Poznan University of Technology, ul. Piotrowo 3A, 60-965 Poznan, Poland.

M. Skorupka

Institute of Mathematics, Poznan University of Technology, ul. Piotrowo 3A, 60-965 Poznan, Poland.