On certain new CAUCHY–TYPE fracitioanl integral inequalities and OPIAL–TYPE fractional derivative inequalities
Main Article Content
Abstract
Article Details
References
G. A. Anastassiou, Opial type inequalities involving Riemann - Liouville fractional derivatives of two functions with applications, Mathematical and Computer Modelling, 48(3)(2008), 344-374.
G. A. Anastassiou,Multivariate Landau fractional inequalities, Journal of Fractional Calculus and Applications, 1(8) (2011), 1-7.
P. R. Beesack, On an integral inequality of Z. Opial, Trans. Amer. Math. Soc., 104(3) (1962), 470-475.
B. L. J. Braaksma, Asymptotic expansions and analytical continuations for a class of Barnes - integrals, Compositio Math. 15(1964), 239-341.
J. A. Canavati, The Riemann- Liouville integral, Nieuw Archief Voor Wiskunde, 5(1) (1987), 53-75.
A. Erdely, On fractional integration and its application to the theory of Hankel transform, Q. J. Math. Oxford Series,44(2) (1940), 293-303.
C. Fox, Integral transforms based upon fractional integration, In Proc. Cambridge Philos. Soc,59(1963), 63-71.
G. D. Handley, J.J.Koliha and J. Pecaric, Hilbert -- Pachpatte type integral inequalities, J. Math. Anal. Appl., 257(2001) 238-250.
Q. A. Ngo, D. D. Thang, T. T.Dat and D. A. Tuan, Notes on integral inequality, J. Inequal. Pure and Appl. Math,7(4) (2006).
Z. Opial, Surune inegalite}, Ann. Polon. Math., 8(1960), 29-32.
M. Saigo, A remark on integral operators involving the Guass hypergeometric function, Rep. College General Ed., Kyushu Univ., 11(1978), 135-143.
S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Yverdon et al.(1993).