On the generalized Fuglede-Putnam Theorem

Main Article Content

M. H. M. Rashid
M. S. M. Noorani
A. S. Saari

Abstract

In this paper, we prove the following assertions:

(1) If the pair of operators $ (A,B^*) $ satisfies

the Fuglede-Putnam Property and $ S\in \ker(\delta_{A,B}) $, where $ S\in \bh $, then we have

$$  \|\delta_{A,B}X+S\|\geq\|S\|.$$

(2) Suppose the pair of operators $ (A,B^*) $ satisfies the Fuglede-Putnam Property. If $ A^{2}X=XB^{2} $ and $ A^{3}X=XB^{3} $, then $ AX=XB $.

(3) Let $ A,B\in \bh $ be such that $ A,B^* $ are
 $ p $-hyponormal. Then  for any $ X\in\c_{2} $, $ AX-XB\in
  \mathcal{C}_{2} $ implies $ A^*X-XB^*\in \mathcal{C}_{2} $.

(4) Let $ T,S\in \bh $ be such that $ T $ and
$ S^* $ are quasihyponormal operators. If $ X\in\bh $ and $ TX=XS$ ,
then  $T^*X=XS^* $.

Article Details

How to Cite
Rashid, M. H. M., Noorani, M. S. M., & Saari, A. S. (2008). On the generalized Fuglede-Putnam Theorem. Tamkang Journal of Mathematics, 39(3), 239–246. https://doi.org/10.5556/j.tkjm.39.2008.16
Section
Papers
Author Biographies

M. H. M. Rashid

School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan, Malaysia, 43600 UKM, Selangor, Malaysia.

M. S. M. Noorani

School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan, Malaysia, 43600 UKM, Selangor, Malaysia.

A. S. Saari

School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan, Malaysia, 43600 UKM, Selangor, Malaysia.