On the generalized Fuglede-Putnam Theorem
Main Article Content
Abstract
In this paper, we prove the following assertions:
(1) If the pair of operators $ (A,B^*) $ satisfies
the Fuglede-Putnam Property and $ S\in \ker(\delta_{A,B}) $, where $ S\in \bh $, then we have
$$ \|\delta_{A,B}X+S\|\geq\|S\|.$$
(2) Suppose the pair of operators $ (A,B^*) $ satisfies the Fuglede-Putnam Property. If $ A^{2}X=XB^{2} $ and $ A^{3}X=XB^{3} $, then $ AX=XB $.
(3) Let $ A,B\in \bh $ be such that $ A,B^* $ are
$ p $-hyponormal. Then for any $ X\in\c_{2} $, $ AX-XB\in
\mathcal{C}_{2} $ implies $ A^*X-XB^*\in \mathcal{C}_{2} $.
(4) Let $ T,S\in \bh $ be such that $ T $ and
$ S^* $ are quasihyponormal operators. If $ X\in\bh $ and $ TX=XS$ ,
then $T^*X=XS^* $.
Article Details
How to Cite
Rashid, M. H. M., Noorani, M. S. M., & Saari, A. S. (2008). On the generalized Fuglede-Putnam Theorem. Tamkang Journal of Mathematics, 39(3), 239–246. https://doi.org/10.5556/j.tkjm.39.2008.16
Issue
Section
Papers