A new proof of Bergweiler's conjecture concerning the first derivative of transcendental meromorphic function with picard exceptional value

Main Article Content

Feng Guo
Yuha Li

Abstract

Let $f$ be a infinite order meromorphic function, suppose $f'$ omits the value 1 in $\mathbb{C}$. Then$M_{f}=f'(f^{-1}(0))$ is unbounded. We give a new proof for the case of infinite order for Bergweiler's conjecture.

Article Details

How to Cite
Guo, F., & Li, Y. (2015). A new proof of Bergweiler’s conjecture concerning the first derivative of transcendental meromorphic function with picard exceptional value. Tamkang Journal of Mathematics, 46(1), 91–99. https://doi.org/10.5556/j.tkjm.46.2015.1631
Section
Papers
Author Biographies

Feng Guo

Department ofMathematics, China UniversityMining & Technology (Beijing), Beijing 100083, China.

Yuha Li

Department ofMathematics, Yunnan Normal University, Kunming 650500, China.

References

B. Walter, Normality and exceptional values of derivatives, Proc. Amer Math. Soc., 129(1999), 121--129.

J. Chang, On meromorphic functions whose first derivatives have finitely many zeros, Bull. Lond. Math. Soc., 44 (2012), 703--715.

A. L. Beitrage zur, Theorie der Meromorphen Funktionen, C. R. $7^{e}$ Congr. Math. Scand. Oslo, 19(1929), 84--88.

X. Pang and L. Zalcman, Normal families and shared values, Bull. London Mtah. Soc., 32, 325--331.

L. Zaclman, A heuristic principle in complex function theory, Amer. Math. (Monthly), 82(1975), 813--817.

X. Pang, Bloch's principle and normal criterion, Sci. China, Ser. A, 32(1989), 782--791. MR91I:30031.

X. Pang, On normal criterion of meromorphic functions, Sci. China, Ser. A, 33(1990), 521--527. MR92B:30041.

J. Clunie and W. K. Hayman, The spherical derivative of integral and meromorphic functions, Comment Math. Helv., 40 (1966), 117--148.

W. K. Hayman, Picard values of meromorphic functions and their derivatives, Ann. Math., 70 (1959), 9--42.

J. Clunie, On integral and meromorphic functions, J. London Math. Soc., 37(1962), 17--27.

E. Mues, Uber eine Vermutung von Hayman. Math. Z., 119(1972), 11--20.

G. Frank, Eine Vermutung von Hayman uber Nullstellen meromorpher Funktion, Math. Z., 149(1976), 29--36.

J. K. Langley, Proof of a conjecture of Hayman concering $f$ and $f"$, J. London Math. Soc., 48(1993), 500--514.

W. Schwick, Sharing values and normality, Arch Math., 59(1992), 50--54.

W. Bergweiler and J. K. Langley, Nonvanishing derivatives and normal families, J. Anal