Persistence and propagation in periodic reaction-diffusion models

Main Article Content

Francois Hamel
Lionel Roques

Abstract

In this paper, we consider Fisher-KPP reaction-diffusion models in periodic environments. We review some results on the questions of species persistence and propagation of pulsating traveling waves. We study the role of the heterogeneities and the fragmentation of the environment on the persistence and on the propagation speeds.

Article Details

How to Cite
Hamel, F., & Roques, L. (2014). Persistence and propagation in periodic reaction-diffusion models. Tamkang Journal of Mathematics, 45(3), 217–228. https://doi.org/10.5556/j.tkjm.45.2014.1656
Section
Survey Articles
Author Biographies

Francois Hamel, Aix-Marseille University

Aix Marseille Université, CNRS, Centrale Marseille. Institut de Mathématiques de Marseille, UMR 7373, 13453 Marseille, France. & InstitutUniversitaire de France.

Lionel Roques, INRA

INRA, UR546 Biostatistique et Processus Spatiaux, 84914 Avignon, France.

References

H. Berestycki, Le nombre de solutions de certains problemes semi-lineaires elliptiques, J.Funct. Anal., 40(1981), 1-29.

H. Berestycki, F. Hamel, Front propagation in periodic excitable media, Comm. Pure Appl. Math., 55(2002), 949-1032.

H. Berestycki, F. Hamel, G. Nadin, Asymptotic spreading in heterogeneous diffusive media, J. Funct. Anal., 255(2008), 2146-2189.

H. Berestycki, F. Hamel, N. Nadirashvili, Elliptic eigenvalue problems with large drift and applications to nonlinear propagation phenomena, Comm. Math. Phys., 253(2005), 451-480.

H.Berestycki, F. Hamel, N.Nadirashvili, The speed of propagation for KPP type problems. I-Periodic framework, J.Eur. Math. Soc., 7(2005),173-213.

H.Berestycki, F. Hamel, L.Roques, Analysis of the periodically fragmented environment model I-Species persistence, J.Math. Biology, 51(2005),75-113.

H.Berestycki, F. Hamel, L.Roques, Analysis of the periodically fragmented environment model II-Biological invasions and pulsating travelling fronts,J. Math. Pures Appl., 84(2005), 1101-1146.

M. Bramson, Convergence of solutions of the Kolmogorov equation to travelling waves, Memoirs Amer. Math. Soc.,44,1983.

R. S. Cantrell, C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Series In Mathematical and Computational Biology, John Wiley and Sons, Chichester, Sussex UK, 2003.

A. Ducrot, T. Giletti, H. Matano, Existence and convergence to a propagating terrace in one-dimensional reaction-diffusion equations, Trans. Amer. Math. Soc. (2014), forthcoming.

M. El Smaily, Pulsating travelling fronts: Asymptotics and homogenization regimes, Europ. J. Appl. Math., 19(2008), 393-434.

M. El Smaily, F. Hamel, L. Roques, Homogenization and influence of fragmentation in a biological invasion model, Disc. Cont. Dyn. SystemsA, 25(2009), 321-342.

M. El Smaily, S. Kirsch, The speed of propagation for KPP reaction-diffusion equations within large drift, Adv. Diff. Eq., 16(2011),361-400.

M. El Smaily, S. Kirsch, Front speed enhancement by incompressible flows in three or higher dimensions, Arch. Ration. Mech. Anal. (2014), forthcoming.

J. Fang, X.-Q. Zhao, Bistable traveling waves for monotone semiflows with applications, J.Europ. Math. Soc., forthcoming.

R. A. Fisher, The advance of advantageous genes, Ann. Eugenics, 7(1937), 335-369.

M. Freidlin, J. Gartner, On the propagation of concentration waves in periodic and random media, Sov. Math. Dokl., 20(1979), 1282-1286.

T. Giletti, Convergence to pulsating traveling waves with minimal speed in some KPP heterogeneous problems, Calc. Var. Part. Diff. Eq.,(2014), forthcoming.

J.-S. Guo, F. Hamel, Propagation and blocking in periodically hostile environments, Arch. Ration. Mech. Anal., 204(2012), 945-975.

F. Hamel, Qualitative properties of KPP and monostable fronts: monotonicity and exponential decay, J. Math. Pures Appl.,89 (2008), 355-399.

F. Hamel, J. Fayard, L. Roques, Spreading speeds in slowly oscillating environments, Bull. Math. Biol., (2010), 1166-1191.

F. Hamel, G. Nadin, L. Roques, A viscosity solution method for the spreading speed formula in slowly varying media, Indiana Univ. Math.J., 60 (2011), 1229-1247.

F. Hamel, J. Nolen, J.-M. Roquejoffre, L. Ryzhik, The logarithmic delay of KPP fronts in a periodic medium, preprint.

F. Hamel, L.Roques, Uniqueness and stability properties of monostable pulsating fronts, J. Europ. Math. Soc., 13(2011), 345-390.

S. Heinze, Large convection limits for KPP fronts, preprint.

J. Huang, W. Shen, Speeds of spread and propagation for KPP models in time almost and space periodic media, SIAM J. Appl. Dyn. Syst., 8(2009),790-821.

W. Hudson, B. Zinner, Existence of travelling waves for reaction-diffusion equations of Fisher type in periodic media, In: Boundary Value Problems for Functional-Differential Equations, J. Henderson (ed.), World Scientific, 1995, 187-199.

A. N. Kolmogorov, I. G. Petrovsky, N. S. Piskunov, Etude de lequation de la diffusion avec croissance de la quantite de matiere et son application a un probleme biologique, Bull. Univ. Etat Moscou, Serie Intern.A, 1(1937), 1-26.

K.-S. Lau, On the nonlinear diffusion equation of Kolmogorov, Petrovsky, and Piscounov, J. Diff. Eq., 59(1985), 44-70.

X. Liang, X. Lin, H. Matano, A variational problem associated with the minimal speed of travelling waves for spatially periodic reaction-diffusion equations, Trans. Amer. Math. Soc., 362(2010), 5605-5633.

X. Liang, X. Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Comm. Pure Appl. Math., 60(2007), 1-40.

X. Liang, X.Q. Zhao, Spreading speeds and traveling waves for abstract monostable evolution systems, J.Funct. Anal., 259(2010), 857-903.

J. D. Murray, Mathematical Biology, Springer-Verlag, 2003.

G. Nadin, Travelling fronts in space-time periodic media, J. Math. Pures Appl., 92(2009), 232-262.

G. Nadin, The effect of Schwarz rearrangement on the periodic principal eigenvalue of a nonsymmetric operator, SIAM J. Math. Anal., 41(2010),2388-2406.

G. Nadin, Some dependence results between the spreading speed and the coefficients of the space-time periodic Fisher-KPP equation, Europ. J.Appl. Math.,

(2011), 169-185.

J. Nolen, M. Rudd, J. Xin, Existence of KPP fronts in spatially-temporally periodic advection and variational principle for propagation speeds, Dyn. Part. Diff. Eq., 2(2005), 1-24.

J. Nolen, J. Xin, Existence of KPP type fronts in space-time periodic shear flows and a study of minimal speeds based on variational principle, Disc. Cont. Dyn. Syst., 13(2005), 1217-1234.

A. Novikov, L. Ryzhik, Boundary layers and KPP fronts in a cellular flow, Arch. Ration. Mech. Anal., 184(2007), 23-48.

L. Roques, F. Hamel, Mathematical analysis of the optimal habitat configurations for species persistence, Math. Biosciences, 210(2007), 34-59.

L. Ryzhik, A. Zlato, KPP pulsating front speed-up by flows, Commun. Math. Sci.,5(2007), 575-593.

D.H. Sattinger, On the stability of waves of nonlinear parabolic systems, Adv. Math., 22(1976), 312-355.

W. Shen, Variational principle for spreading speeds and generalized propagating speeds in time almost periodic and space periodic KPP models, Trans. Amer.

Math. Soc., 362(2010), 5125-5168.

N. Shigesada, K. Kawasaki, Biological Invasions: Theory and Practice, Oxford Series in Ecology and Evolution, Oxford: Oxford UP, 1997.

N. Shigesada, K. Kawasaki, E. Teramoto, Traveling periodic waves in heterogeneous environments, Theor. Pop. Bio., 30(1986), 143-160.

K. Uchiyama, The behavior of solutions of some semilinear diffusion equation for large time, J. Math. Kyoto Univ., 18(1978), 453-508.

H. F. Weinberger, On spreading speeds and traveling waves for growth and migration in periodic habitat, J.Math. Biol. 45(2002), 511-548.

X. Xin, Existence and stability of travelling waves in periodic media governed by a bistable nonlinearity, J. Dyn. Diff. Eq., 3(1991),541-573.

X. Xin, Existence of planar flame fronts in convective-diffusive periodic media, Arch. Ration. Mech. Anal., 121(1992), 205-233.

J. X. Xin, Analysis and modeling of front propagation in heterogeneous media}, SIAM Review, 42(2000), 161-230.

A. Zlato, Sharp asymptotics for KPP pulsating front speed-up and diffusion enhancement by flows, Arch. Ration. Mech. Anal.,195 (2010), 441-453.

A. Zlato, Reaction-diffusion front speed enhancement by flows, Ann. Inst. H.Poincare, Anal. Non Lin., 28(2011), 711-726.