Fuglede-Putnam Theorem and Quasi-nilpotent part of n-power normal operators

Main Article Content

Vijayalakshmi P.
Stella Irene Mary J.

Abstract

In this article we show that the following properties hold for $n$-power normal operators $T$:(i) $T$ has the Bishop's property$(\beta)$.(ii) $T$ is isoloid.(iii) $T$ is invariant under tensor product.(iv) $T$ satisfies the Fuglede-Putnam theorem.(v) $T$ is of finite ascent and descent.(vi) The Quasi-nilpotent part of $T$ reduces $T$.

Article Details

How to Cite
P., V., & J., S. I. M. (2015). Fuglede-Putnam Theorem and Quasi-nilpotent part of n-power normal operators. Tamkang Journal of Mathematics, 46(2), 151–165. https://doi.org/10.5556/j.tkjm.46.2015.1665
Section
Papers
Author Biographies

Vijayalakshmi P.

Department OfMathematics, P.S.G College Of Arts And Science, Coimbatore, Tamilnadu, India 641014.

Stella Irene Mary J.

Department OfMathematics, P.S.G College Of Arts And Science, Coimbatore, Tamilnadu, India 641014.

References

P. Aiena, Fredholm and Local Spectral Theory, with Applications to Multipliers, Kluwer Academic Publishers, Dordrecht, Boston, London, 2004.

P. Aiena, M. T. Biondi and F. Villafane, Weyl's theorems and Kato spectrum, Divulgaciones Matematicas, 15 (2007), 123--142.

T. Ando, Operators with a norm condition, Acta Sci. Math. Szeged, 33(1972), 169--178.

S. K. Berberian, Extensions of a theorem of Fuglede and Putnam, Proc. Am. Math. Soc., 71(1978),113--114.

M. Cho and T. Yamazaki, An operator transform from class $A$ to the class of hyponormal operators and its application, Integral Equ. Oper. Theory, 53 (2005), 497--508.

B. P. Duggal, Tensor products of operators - strong stability and p -hyponormality, Glasgow Math. J., 42 (2000), 371--381.

B. P. Duggal, I. H. Jeon and I. H. Kim, On $*$-paranormal contractions and properties for $*$-class $A$ operators, Linear Algebra and its Applications, 436(2012), 954--962.

Eungil Ko, Properties of a $k$th root of a hyponormal operator, Bull. Korean Math. Soc., 40(2003), 685--692.

D. R. Farenick and I. H. Kim, Tensor products of quasihyponormal operators, Proc. of Kotac, 4(2002), 113--119.

B. Fuglede, A commutativity theorem for normal operators, Proc. Nat. Acad. Sci. USA, 36(1950), 35--40.

T. Furuta, An extension of the Fuglede-Putnam theorem to subnormal operators using a Hilbert-Schmidt norm inequality , Proc. Am. Math. Soc., 81(1981), 240--242.

H. Heuser, Functional Analysis, Marcel Dekker, New York, 1982.

Jan Stochel, Seminormality of operators from their tensor product, Proc. Am. Math. Soc., 124(1996), 135--140.

I. H. Jeon and B. P. Duggal, On operators with an absolute value condition, J. Korean Math. Soc., 41(2004), 617--627.

A. A. S. Jibril, On $n$-Power normal operators, The Arabian Journal for Science and Engineering, 33(2008), 247--251.

H. Jinchuan, On the tensor product of operators, Acta Math. Sinica, 9(1993), 195--202.

K. B. Laursen and M. M. Neumann, An Introduction to Local Spectral Theory, Oxford Science Publications (London Math. Soc. Mono. new series 20), (2000).

B. Magajna, On subnormality of generalized derivations and tensor products, Bull. Austral. Math. Soc., 31(1985), 235--243.

J. S. I. Mary and S. Panayappan, Some properties of class $A(k)$ operators and their hyponormal transforms, Glasgow Math. J., 49 (2007), 133--143.

S. Mecheri, K. Tanahashi and A. Uchiyama, Fuglede-Putnam theorem for p-hyponormal or class Y operators, Bull. Korean Math. Soc., 43(2006), 747--753.

M. Putinar, Hyponormal operators are subscalar, J. Operator Theory, 12 (1984), 385--395.

C. R. Putnam , On normal operators in Hilbert spaces, Am. J. Math., 73(1951), 357--362.

T. Saito , Hyponormal operators and related topics, Lecture Notes in Mathematics No.247 (Springer-Verlag, 1971).

Salah Mecheri , On $k$-quasi-$M$-hyponormal operators, Mathematical Inequalities and Applications, 16(2013), 895--902.

P. Saphar , Contribution a letude des applications lineaires dans un espace de Banach, Bull. Soc. Math. France, 92 (1964), 363--384.

K. Tanahashi, I. H. Jeon, I. H. Kim and A. Uchiyama, Quasinilpotent part of class $A$ or $(p,k)$

quasihyponormal operators, Operator Theory: Advances

and Applications, 187 (2008), 199--210.

A. Uchiyama and K. Tanahashi , Bishop's property $(beta)$ for paranormal operators, Oper. Matrices, 3(2009), 517--524.

P. Vrbova, On local spectral properties of operators in Banach spaces, Czechoslovak Math. J., 23(1973), 483--492.