An explicit viscosity iterative algorithm for finding the solutions of a general equilibrium problem systems

Authors

  • H. R. Sahebi .
  • S. Ebrahimi

DOI:

https://doi.org/10.5556/j.tkjm.46.2015.1678

Keywords:

Nonexpansive semigroup, general equilibrium problems system, strongly positive linear bounded operator,

Abstract

We suggest an explicit viscosity iterative algorithm for finding a common element of the set of solutions for an general equilibrium problem system (GEPS) involving a bifunction defined on a closed, convex subset and the set of fixed points of a nonexpansive semigroup on another one in Hilbert's spaces. Furthermore, we present some numerical examples(by using MATLAB software) to guarantee the main result of this paper.

Author Biographies

H. R. Sahebi, .

Department of Mathematics, Ashtian Branch, Islamic Azad University, P.O. Box 39618-13347, Ashtian, Iran

S. Ebrahimi

Department of Mathematics, Ashtian Branch, Islamic Azad University, P.O. Box 39618-13347, Ashtian, Iran.

References

E. F. Browder, Fixed point theorems for nonexpansive mappings in Hilbert spaces,Proceed. Nat. Acad. Sci., 53 (1965), 1272--1276.

P. Combettes and A. Histoaga, Equilibrium programming in Hilbert spaces,J. Nonlinear Convex Anal., 6 (2005), 117--136.

A. L. Dontchev and T. Zolezzi, Well-posed optimization problems, Lecture Notes in Mathematics, 1543 (1993), Springer-Verlag.

K. Goebel and W. A. Kirk, Topics in metric fixed point theory, Vol 28 of Cambidge Studies in Advanced Mathematics}, Cambridge University Press, Cambridge, U.K (1995).

M. G. Crandall and P. L. Lions, Viscosity solution of Hamilton-Jacobi equations,Trans. Amer. Math. Soc., 277(1983), 1--42.

Z. He and W. S. Du, Strong convergence theorems for equilibrium problems and fixed point peoblems: A new iterative method, some comments and applications,

Fixed Point Theroy Appl., Article ID. 33(2011), 15 pages.

T. Jitpeera, P. Kachang and P. Kumam, A viscosity of Ceasaro mean approximation methods for a mixed equilibrium, varational inequalities, and fixed point problems, Fixed Point Theroy Appl., Article ID. 945051(2011), 24 pages.

U. Kamraska and R. Wangkeeree, Generalized equilibrium problems and fixed point problems for nonexpansive semigroups in Hilbert spaces, J. Glob. Optim., 51(2011), 689--714.

R. V. Kohn and P. Sternberg, Local minimizers and singular perturbations, Proc. Royal Soc. Edinburgh, Sect. A, 111(1989), 64--84.

P. Kumam and P. Kachang, A viscosity of extragradient approximation method for finding equilibirum problem, varational inequlities and fixed point problems for nonexpansive mappings, Nonlinear Anal. Hybrid Syst., 3(2009), 475--486.

O. A. Ladyzenskaya and N. N. Uralceva, Local estimates for gradients of solutionsof uniformly elliptic and parabolic equations, Com. Pure Appl. Math., 18(1970), 677--703.

J. L. Lions, Quelques methodes de resolution des probl`emes aux limites nonlineaires, Dunod et Gauthiers-Villars, Paris, 1969.

G. Marino and H. K. Xu, A genaral iterative method for nonexpansive mappings in Hilbert spaces, J. Math. Anal. Appl., 318(2006), 43--52.

K. Nakajo, W. Takahashi, Strong and weak convergence theorems by an improved splitting method, Comm. Appl. Nonlinear Anal.9 (2002), 99--107.

Z. Opial, Weak convergence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc., 73(1967), 591--597.

S. Plubtieng and R. Punpaeng, A general iterative methods for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Appl., textbf{336} (2007), 455--469.

S. Plubtieng and R. Punpaeng, Fixed point solutions of variational inequalities for nonexpansive semigroups in Hilbert spaces, Math. Comput. Modelling, 48 (2008), 279--286.

T. Shimizu and W. Takahashi,Strong convergence to common fixed points of nonexpansive mappings, J. Math. Anal. Appl., 211 (1997), 71--83.

T. Suzuki, Strong convergence of Krasnoselkii and Mann's type sequences for one-parameter nonexpansive semigroups without Bochner integrals, J. Math. Anal. Appl., 305(2005), 227--239.

W. Takahashi, Nonlinear complemetarity problem and systems of convex inequalities, J. Optim. Theory Appl., 24(1978), 493--503.

K. K. Tan, H. K. Xu, The nonlinear ergodic theorem for asymptotically nonexapansive mappings in Banach spaces, Proc. Amer. Math. Soc., 114(1992), 309--404.

A. Tychonov, Solution of incorrectly formulated problems and the regularization method, Soviet Math. Dokl., 4(1963), 1035--1038.

H. K. Xu, Viscosity approximation methods for nonexpansive mappings,J. Math. Anal. Appl., 298 (2004), 279--291.

H. Zhou,Convergence theorems of fixed points for k-strict pseudo-contractions in Hilbert spaces, Nonlinear Anal., 69 (2008), 456--462.

Downloads

Published

2015-09-30

How to Cite

Sahebi, H. R., & Ebrahimi, S. (2015). An explicit viscosity iterative algorithm for finding the solutions of a general equilibrium problem systems. Tamkang Journal of Mathematics, 46(3), 193–216. https://doi.org/10.5556/j.tkjm.46.2015.1678

Issue

Section

Papers