On irreducible divisor graphs in commutative rings with zero-divisors

Main Article Content

Christopher Park Mooney

Abstract

In this paper, we continue the program initiated by I. Beck's now classical paper concerning zero-divisor graphs of commutative rings. After the success of much research regarding zero-divisor graphs, many authors have turned their attention to studying divisor graphs of non-zero elements in integral domains. This inspired the so called irreducible divisor graph of an integral domain studied by J. Coykendall and J. Maney. Factorization in rings with zero-divisors is considerably more complicated than integral domains and has been widely studied recently. We find that many of the same techniques can be extended to rings with zero-divisors. In this article, we construct several distinct irreducible divisor graphs of a commutative ring with zero-divisors. This allows us to use graph theoretic properties to help characterize finite factorization properties of commutative rings, and conversely.

Article Details

How to Cite
Mooney, C. P. (2015). On irreducible divisor graphs in commutative rings with zero-divisors. Tamkang Journal of Mathematics, 46(4), 365–388. https://doi.org/10.5556/j.tkjm.46.2015.1753
Section
Papers
Author Biography

Christopher Park Mooney, Westminster College

Visiting Assistant Professor,Department of Mathematics.

References

D. D. Anderson, M. Axtell, S. J. Forman and J. Stickles,When are associates unit multiples,Rocky Mountain J. Math., 34(2004), 811--828.

D. D. Anderson and M. Naseer, Beck's coloring of a commutative ring, J. of Algebra, 159(1993), 500--514.

D. D. Anderson and S. Valdes-Leon, Factorization in commutative rings with zero divisors, Rocky Mountain J. of Math., 26(1996), 439--480.

D. F. Anderson, Michael C. Axtell and J. A. Stickles, Zero-divisor graphs in commutative rings, Commutative algebra---Noetherian and non-Noetherian perspectives, 23--45, Springer, New York, 2011.

D. F. Anderson and A. Badawi, On the zero-divisor graph of a ring, Comm. Algebra, 36(2008) 3037--3092.

D. F. Anderson, A. Frazier, A. Lauve and P. S. Livingston, The zero-divisor graph of a commutative ring. II,Ideal theoretic methods in commutative algebra (Columbia, MO,

, vol. 220, Lecture Notes in Pure and Appl. Math., 61--72, Dekker, New York, 2001.

D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217(1999), 434--447.

M. Axtell, N. Baeth and J. Stickles, Irreducible divisor graphs and factorization properties of domains, Comm. Algebra, 39(2011), 4148--4162.

M. Axtell and J. Stickles, Irreducible divisor graphs in commutative rings with zero-divisors, Comm. Algebra, 36(2008), 1883--1893.

I. Beck, Coloring of commutative rings, J. Algebra, 116(1988), 208--226.

A. Bouvier, Sur les anneaux de fractions des anneaux atomiques resimpliables, Bull. Sci. Math.,95(1971), 371--376.

A. Bouvier, Anneaux presimpliables, C. R. Acad. Sci. Paris Ser A-B., 274(1972), A1605--A1607.

A. Bouvier, Resultats nouveaux sur les anneaux presimpliables, C. R. Acad. Sci. Paris Ser A-B., 275 (1972), A955--A957.

A. Bouvier, Anneaux presimpliables, Rev. Roumaine Math. Pures Appl.,19(1974), 713--724.

A. Bouvier, Structure des anneaux a factorisation unique, Pb. Dept. Math. Lyon, 11(1974), 39--49.

J. Coykendall and J. Maney, Irreducible divisor graphs, Comm. Algebra, 35 (2007), 885--895.

S. Galovich Unique factorization rings with zero-divisors, Math. Magazine, 51 (1978), 276--283.

C. P. Mooney, Generalized factorization in commutative rings with zero-divisors, Houston J. Math.,41(2015), 15--32.

C. P. Mooney, Generalized irreducible divisor graphs, Comm. Algebra, 42(2014), 4366--4375.