On the tricyclic graphs with three disjoint 6-cycles and maximum matching energy

Main Article Content

Yun-Xia Zhou
Hong-Hai Li

Abstract

The matching energy of a graph was introduced recently by Gutman and Wagner and defined as the sum of the absolute values of zeros of its matching polynomial. In this paper, we characterize graphs that attain the maximum matching energy among all connected tricyclic graphs of order $n$ with three vertex-disjoint $C_6$'s.

Article Details

How to Cite
Zhou, Y.-X., & Li, H.-H. (2015). On the tricyclic graphs with three disjoint 6-cycles and maximum matching energy. Tamkang Journal of Mathematics, 46(4), 389–399. https://doi.org/10.5556/j.tkjm.46.2015.1768
Section
Papers
Author Biographies

Yun-Xia Zhou

College ofMathematics and Information Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.

Hong-Hai Li

College ofMathematics and Information Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.

References

L. Chen and Y. Shi, The maximal matching energy of tricyclic graphs, MATCH Commun. Math. Comput. Chem., 73 (2015), 105--119.

L. Chen, J. Liu and Y. Shi, Matching energy of unicyclic and bicyclic graphs with a given diameter, Complexity, to appear.

I. Gutman, Graphs with greatest number of matchings, Publ. Inst. Math. (Beograd), 27(1980), 67--76.

I. Gutman, X. Li, Y. Shi and J. Zhang, Hypoenergetic trees, MATCH Commun. Math. Comput. Chem., 60(2008), 415--426.

I. Gutman nad S. Wagner, The matching energy of a graph, Discr. Appl. Math., 160 (2012), 2177--2187.

B. Huo, X. Li and Y. Shi, Complete solution to a conjecture on the maximal energy of unicyclic graphs, European J. Combin.,32(2011), 662--673.

B. Huo, X. Li and Y. Shi, Complete solution to a problem on the maximal energy of unicyclic bipartite graphs,Lin. Algebra Appl., 434(2011), 1370--1377.

S. J. Ji, X. L. Li and Y. T. Shi, Extremal matching energy of bicyclic graphs,MATCH Commun. Math. Comput. Chem., 70(2013),697--706.

H. H. Li, B. S. Tam and L. Su, On the signless Laplacian coeffcients of unicyclic graphs,Lin. Algebra Appl., 439(2013), 2008--2009.

H. H. Li, Y. X. Zhou, L. Su, Graphs with extremal matching energies and prescribed parameters, MATCH Commun. Math. Comput. Chem., 72(2014), 239--248.

S. L. Li and W. G. Yan, The matching energy of graphs with given parameters, Discr. Appl. Math., 162(2014), 415--420.

X. Li, Y. Shi, I. Gutman, Graph Energy, Springer, New York, 2012.

X. L. Li, Y. T. Shi and M. Q. Wei, On a conjecture about tricyclic graphs with maximal energy, MATCH Commun. Math. Comput. Chem., 72(2014),183--214.

K. Xu, K. C. Das and Z. Zheng, The minimal matching energy of $(n,m)$-graphs with a given matching number, MATCH Commun. Math. Comput. Chem., 73(2015), 93--104.