On the tricyclic graphs with three disjoint 6-cycles and maximum matching energy
Main Article Content
Abstract
Article Details
References
L. Chen and Y. Shi, The maximal matching energy of tricyclic graphs, MATCH Commun. Math. Comput. Chem., 73 (2015), 105--119.
L. Chen, J. Liu and Y. Shi, Matching energy of unicyclic and bicyclic graphs with a given diameter, Complexity, to appear.
I. Gutman, Graphs with greatest number of matchings, Publ. Inst. Math. (Beograd), 27(1980), 67--76.
I. Gutman, X. Li, Y. Shi and J. Zhang, Hypoenergetic trees, MATCH Commun. Math. Comput. Chem., 60(2008), 415--426.
I. Gutman nad S. Wagner, The matching energy of a graph, Discr. Appl. Math., 160 (2012), 2177--2187.
B. Huo, X. Li and Y. Shi, Complete solution to a conjecture on the maximal energy of unicyclic graphs, European J. Combin.,32(2011), 662--673.
B. Huo, X. Li and Y. Shi, Complete solution to a problem on the maximal energy of unicyclic bipartite graphs,Lin. Algebra Appl., 434(2011), 1370--1377.
S. J. Ji, X. L. Li and Y. T. Shi, Extremal matching energy of bicyclic graphs,MATCH Commun. Math. Comput. Chem., 70(2013),697--706.
H. H. Li, B. S. Tam and L. Su, On the signless Laplacian coeffcients of unicyclic graphs,Lin. Algebra Appl., 439(2013), 2008--2009.
H. H. Li, Y. X. Zhou, L. Su, Graphs with extremal matching energies and prescribed parameters, MATCH Commun. Math. Comput. Chem., 72(2014), 239--248.
S. L. Li and W. G. Yan, The matching energy of graphs with given parameters, Discr. Appl. Math., 162(2014), 415--420.
X. Li, Y. Shi, I. Gutman, Graph Energy, Springer, New York, 2012.
X. L. Li, Y. T. Shi and M. Q. Wei, On a conjecture about tricyclic graphs with maximal energy, MATCH Commun. Math. Comput. Chem., 72(2014),183--214.
K. Xu, K. C. Das and Z. Zheng, The minimal matching energy of $(n,m)$-graphs with a given matching number, MATCH Commun. Math. Comput. Chem., 73(2015), 93--104.