Inverse scattering problem for Sturm-Liouville operator on non-compact A-graph. Uniqueness result.
Main Article Content
Abstract
Article Details
References
M. Faddeev and B. Pavlov, Model of free electrons and the scattering problem}, Teor. Mat. Fiz., 55(1983), 257--269 (Russian); English transl. in Theor. Math. Phys.,55(1983), 485--492.
P. Exner, Contact interactions on graph superlattices, J . Phys. A: Math. Gen.,29 (1996), 87--102.
T. Kottos and U. Smilansky, Quantum chaos on graphs, Phys. Rev. Lett., 79(1997), 4794--4797.
S. Nicaise, Some results on spectral theory over networks, applied to nerve impulse transmission, Lect. Notes Math., vol. 1771(1985), Springer, 532--541.
Y. V. Pokornyi and A. V. Borovskikh, Differential equations on networks $($geometric graphs$)$, J. Math. Sci. (N.Y.), 119(2004), 691--718.
Y. V. Pokornyi and V. Pryadiev, The qualitive Sturm--Liouville theory on spatial networks, J. Math. Sci. (N.Y.), 119(2004), 788--835.
P. Kuchment, Quantum graphs, Waves Random Media, 14(2004), S107--S128.
S. Avdonin and P. Kurasov, Inverse problems for quantum trees, Inverse Problems and Imaging, 2 (2008), 121.
B. M. Brown and R. Weikard, A Borg-Levinson theorem for trees, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461(2005), no.2062, 3231--3243.
M. I. Belishev, Boundary spectral inverse problem on a class of graphs $($trees$)$ by the BC method, Inverse Problems, 20(2004), 647--672.
V. A. Yurko, Inverse spectral problems for Sturm-Liouville operators on graphs, Inverse Problems, 21(2005), 1075--1086.
V. A. Yurko, Recovering differential pencils on compact graphs, J. Diff. Equations, 244(2008), 431--443.
V. A. Yurko, Inverse problems for arbitrary order differential operators on trees, Matemat. Zametki, 83(2008), 139--152 (Russian); English transl. in Math. Notes, 83(2008), 125--137.
V. A. Yurko, Uniqueness of recovering of Sturm--Liouville operators on A-graphs from spectra, Results in Mathematics, 55(2009), 199--207.
V. A. Yurko, Inverse spectral problem for differential operators on arbitrary compact graphs, Journal of Inverse and Ill-Posed Problems, 18(2010), no.3.
N. I. Gerasimenko, Inverse scattering problems on a noncompact graph, Teoret. Mat. Fiz., 74(1988), 187--200; English transl. in Theor. Math. Phys., 75(1988),460--470.
G. Freiling and V. A. Yurko, Inverse spectral problems for Sturm-Liouville operators on noncompact trees, Results in Math., 50 (2007), 195--212.
I. Trooshin, V. Marchenko and K. Mochizuki, Inverse scattering on a graph containing circle, Analytic methods of analysis and DEs: AMADE 2006, 237--243, Camb. Sci. Publ., Cambridge, 2008.
P. Kurasov and F. Sternberg, On the inverse scattering problem on branching graphs, J. Phys. A, 35(2002), 101-121.
P. Kurasov and J. Boman, Symmetries of quantum graphs and the inverse scattering problem, Advances in Applied Mathematics, 35(2005), 58--70.
P. Kurasov, Inverse problems for Aharonov-Bohm rings, Math. Proc. Cambridge Philos. Soc., 148(2010), 331--362.
P. Kurasov and M. Enerback, On an inverse problem for quantum rings, Report 14, Dept. of Math., Lund Univ., 2010.
V. A. Yurko, Inverse problems for Sturm-Liouville operators on bush-type graphs}, Inverse Problems, 25(2009), 105008.
V. A. Yurko., Reconstruction of Sturm-Liouville operators from the spectra on a graph with a cycle, Sb. Math., 200(2009),147--160.
E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw--Hill, New York, 1955.
G. Freiling and V. A. Yurko, Inverse Sturm-Liouville Problems and Their Applications, Nova Science Publishers, New York, 2001.
G. Freiling and M. Ignatyev, Spectral analysis for the Sturm--Liouville operator on sun-type graphs, Inverse Problems, 2011, 27, 095003, doi:10.1088/0266-5611/27/9/095003.
M. Ignatyev, Inverse scattering problem for Sturm--Liouville operator on one-vertex noncompact graph with a cycle, Tamkan J. of Mathematics 42(2011), 365--384.
A. Zettl, Sturm-Liouville theory, Mathematical Surveys and Monographs 121. Providence, RI: American Mathematical Society, 2005.
B. M. Levitan, Inverse Sturm-Liouville Problems,VNU Sci.Press, Utrecht, 1987.
R. Bellman and K. Cooke, Differential-Difference Equations, Academic Press, New York, 1963.