Joins, coronas and their vertex-edge Wiener polynomials

Main Article Content

Mahdieh Azari
Ali Iranmanesh

Abstract

The vertex-edge Wiener index of a simple connected graph $G$ is defined as the sum of distances between vertices and edges of $G$. The vertex-edge Wiener polynomial of $G$ is a generating function whose first derivative is a $q-$analog of the vertex-edge Wiener index. Two possible distances $D_1(u, e|G)$ and $D_2(u, e|G)$ between a vertex $u$ and an edge $e$ of $G$ can be considered and corresponding to them, the first and second vertex-edge Wiener indices of $G$, and the first and second vertex-edge Wiener polynomials of $G$ are introduced. In this paper, we study the behavior of these indices and polynomials under the join and corona product of graphs. Results are applied for some classes of graphs such as suspensions, bottlenecks, and thorny graphs.

Article Details

How to Cite
Azari, M., & Iranmanesh, A. (2016). Joins, coronas and their vertex-edge Wiener polynomials. Tamkang Journal of Mathematics, 47(2), 163–178. https://doi.org/10.5556/j.tkjm.47.2016.1824
Section
Papers
Author Biographies

Mahdieh Azari

Department of Mathematics, Kazerun Branch, Islamic Azad University, P. O. Box: 73135-168, Kazerun, Iran.

Ali Iranmanesh

Department of PureMathematics, Faculty of Mathematical Sciences, TarbiatModaresUniversity, P. O. Box: 14115- 137, Tehran, Iran.

References

M. Azari and A. Iranmanesh, Computation of the edge Wiener indices of the sum of graphs, Ars Combin., 100(2011),113--128.

M. Azari and A. Iranmanesh, Computing Wiener-like topological invariants for some composite graphs and some nanotubes and nanotori, In: I. Gutman, (Ed.), Topics in Chemical Graph Theory, Univ. Kragujevac, Kragujevac, 2014, 69--90.

M. Azari and A. Iranmanesh, The second edge-Wiener index of some composite graphs, Miskolc Math. Notes. 15(2) (2014),305--316.

M. Azari, A. Iranmanesh and A. Tehranian, A method for calculating an edge version of the Wiener number of a graph operation, Util. Math., 87 (2012), 151--164.

M. Azari, A. Iranmanesh and A. Tehranian, Maximum and Minimum polynomials of a composite graph, Austral. J. Basic Appl. Sci., 5(9) (2011), 825--830.

M. Azari, A. Iranmanesh and A. Tehranian, Two topological indices of three chemical structures, MATCH Commun. Math. Comput. Chem., 69(2013), 69--86.

P. Dankelmann, I. Gutman, S. Mukwembi and H. C. Swart, The edge Wiener index of a graph, Discrete Math.,309(2009), 3452--3457.

Darafsheh M. R. Darafsheh and M. H. Khalifeh, Calculation of the Wiener, Szeged, and PI indices of a certain nanostar dendrimer, Ars Combin., 100 (2011), 289--298.

M. V. Diudea, Hosoya polynomial in tori}, MATCH Commun. Math. Comput. Chem., 45(2002), 109--122.

M. V. Diudea, Wiener index of dendrimers, MATCH Commun. Math.Comput. Chem., 32(1995), 71--83.

T. Doslic, Vertex-Weighted Wiener polynomials for composite graphs, Ars Math. Contemp., 1(2008), 66-80.

I. Gutman, A new method for the calculation of the Wiener number of acyclic molecules, J. Mol. Struct. (Theochem). 285(1993), 137--142.

I. Gutman, Calculating the Wiener number: the Doyle--Graver method, J. Serb. Chem. Soc., 58(1993), 745--750.

I. Gutman, Hosoya polynomial and the distance of the total graph of a tree, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat.,10(1999), 53--58.

I. Gutman and O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin, 1986.

I. Gutman and N. Trinajstic, Graph theory and molecular orbitals, Total $pi-$electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17(1972), 535--538.

H. Hosoya, On some counting polynomials in Chemistry, Discrete Appl. Math., 19(1988), 239--257.

A. Iranmanesh and M. Azari, Edge-Wiener descriptors in Chemical graph theory: A survey, Curr. Org. Chem., 19(3) (2015), 219--239.

A. Iranmanesh, I. Gutman, O. Khormali and A. Mahmiani, The edge versions of Wiener index, MATCH Commun. Math. Compute. Chem., 61(2009), 663--672.

M. H. Khalifeh, H. Yousefi-Azari, A. R. Ashrafi and S. G. Wagner, Some new results on distance-based graph invariants, European J. Combin.,30(2009), 1149--1163.

D. J. Klein, T. Doslic and D. Bonchev, Vertex-weightings for distance moments and thorny graphs, Discrete Appl. Math., 155(2007), 2294--2302.

M. J. Nadjafi-Arani, H. Khodashenas and A. R. Ashrafi, Relationship between edge Szeged and edge Wiener indices of graphs, Glas. Mat. Ser. III, 47(67) (2012),

-29.

R. Nasiri, H. Yousefi-Azari, M. R. Darafsheh and A. R. Ashrafi, Remarks on the Wiener index of unicyclic graphs, J. Appl. Math. Comput., 41(1-2) (2013), 49-59.

B. E. Sagan, Y. Yeh and P. Zhang, The Wiener polynomial of a graph, Inter. J. Quantum Chem., 60(1996), 959-969.

N. Trinajstic, Chemical Graph Theory, CRC Press, Boca Raton, FL, 1992.

H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc., 69(1947), 17--20.

H. Wiener, Correlation of heats of isomerization and differences in heats of vaporization of isomers among the paraffin hydrocarbons, J. Amer. Chem. Soc., 69 (1947), 2636-2638.

Z. Yarahmadi, T. Doslic and A. R. Ashrafi, The bipartite edge frustration of composite graphs}, Discrete Appl. Math., 158(2010), 1551--1558.