Joins, coronas and their vertex-edge Wiener polynomials
Main Article Content
Abstract
Article Details
References
M. Azari and A. Iranmanesh, Computation of the edge Wiener indices of the sum of graphs, Ars Combin., 100(2011),113--128.
M. Azari and A. Iranmanesh, Computing Wiener-like topological invariants for some composite graphs and some nanotubes and nanotori, In: I. Gutman, (Ed.), Topics in Chemical Graph Theory, Univ. Kragujevac, Kragujevac, 2014, 69--90.
M. Azari and A. Iranmanesh, The second edge-Wiener index of some composite graphs, Miskolc Math. Notes. 15(2) (2014),305--316.
M. Azari, A. Iranmanesh and A. Tehranian, A method for calculating an edge version of the Wiener number of a graph operation, Util. Math., 87 (2012), 151--164.
M. Azari, A. Iranmanesh and A. Tehranian, Maximum and Minimum polynomials of a composite graph, Austral. J. Basic Appl. Sci., 5(9) (2011), 825--830.
M. Azari, A. Iranmanesh and A. Tehranian, Two topological indices of three chemical structures, MATCH Commun. Math. Comput. Chem., 69(2013), 69--86.
P. Dankelmann, I. Gutman, S. Mukwembi and H. C. Swart, The edge Wiener index of a graph, Discrete Math.,309(2009), 3452--3457.
Darafsheh M. R. Darafsheh and M. H. Khalifeh, Calculation of the Wiener, Szeged, and PI indices of a certain nanostar dendrimer, Ars Combin., 100 (2011), 289--298.
M. V. Diudea, Hosoya polynomial in tori}, MATCH Commun. Math. Comput. Chem., 45(2002), 109--122.
M. V. Diudea, Wiener index of dendrimers, MATCH Commun. Math.Comput. Chem., 32(1995), 71--83.
T. Doslic, Vertex-Weighted Wiener polynomials for composite graphs, Ars Math. Contemp., 1(2008), 66-80.
I. Gutman, A new method for the calculation of the Wiener number of acyclic molecules, J. Mol. Struct. (Theochem). 285(1993), 137--142.
I. Gutman, Calculating the Wiener number: the Doyle--Graver method, J. Serb. Chem. Soc., 58(1993), 745--750.
I. Gutman, Hosoya polynomial and the distance of the total graph of a tree, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat.,10(1999), 53--58.
I. Gutman and O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin, 1986.
I. Gutman and N. Trinajstic, Graph theory and molecular orbitals, Total $pi-$electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17(1972), 535--538.
H. Hosoya, On some counting polynomials in Chemistry, Discrete Appl. Math., 19(1988), 239--257.
A. Iranmanesh and M. Azari, Edge-Wiener descriptors in Chemical graph theory: A survey, Curr. Org. Chem., 19(3) (2015), 219--239.
A. Iranmanesh, I. Gutman, O. Khormali and A. Mahmiani, The edge versions of Wiener index, MATCH Commun. Math. Compute. Chem., 61(2009), 663--672.
M. H. Khalifeh, H. Yousefi-Azari, A. R. Ashrafi and S. G. Wagner, Some new results on distance-based graph invariants, European J. Combin.,30(2009), 1149--1163.
D. J. Klein, T. Doslic and D. Bonchev, Vertex-weightings for distance moments and thorny graphs, Discrete Appl. Math., 155(2007), 2294--2302.
M. J. Nadjafi-Arani, H. Khodashenas and A. R. Ashrafi, Relationship between edge Szeged and edge Wiener indices of graphs, Glas. Mat. Ser. III, 47(67) (2012),
-29.
R. Nasiri, H. Yousefi-Azari, M. R. Darafsheh and A. R. Ashrafi, Remarks on the Wiener index of unicyclic graphs, J. Appl. Math. Comput., 41(1-2) (2013), 49-59.
B. E. Sagan, Y. Yeh and P. Zhang, The Wiener polynomial of a graph, Inter. J. Quantum Chem., 60(1996), 959-969.
N. Trinajstic, Chemical Graph Theory, CRC Press, Boca Raton, FL, 1992.
H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc., 69(1947), 17--20.
H. Wiener, Correlation of heats of isomerization and differences in heats of vaporization of isomers among the paraffin hydrocarbons, J. Amer. Chem. Soc., 69 (1947), 2636-2638.
Z. Yarahmadi, T. Doslic and A. R. Ashrafi, The bipartite edge frustration of composite graphs}, Discrete Appl. Math., 158(2010), 1551--1558.