Oscillation theorems for second order difference equations woth negative neutral term

Main Article Content

Ethiraju Thandapani
Devarajulu Seghar
Sandra Pinelas

Abstract

In this paper we obtain some new oscillation criteria for the neutral difference equation \begin{equation*} \Delta \Big(a_n (\Delta (x_n-p_n x_{n-k}))\Big)+q_n f(x_{n-l})=0 \end{equation*} where $0\leq p_n\leq p0$ and $l$ and $k$ are positive integers. Examples are presented to illustrate the main results. The results obtained in this paper improve and complement to the existing results.

Article Details

How to Cite
Thandapani, E., Seghar, D., & Pinelas, S. (2015). Oscillation theorems for second order difference equations woth negative neutral term. Tamkang Journal of Mathematics, 46(4), 441–451. https://doi.org/10.5556/j.tkjm.46.2015.1827
Section
Papers
Author Biographies

Ethiraju Thandapani

Ramanujan Institute for Advanced Study inMathematics, University ofMadras, Chennai -600 005, India.

Devarajulu Seghar

Ramanujan Institute for Advanced Study inMathematics, University ofMadras, Chennai -600 005, India.

Sandra Pinelas

AcademiaMilitar,Departamento de Ciencias Exactas eNaturais, Av. Conde CastroGuimaraes, 2720-113 Amadora, Portugal.

References

R. P. Agarwal, Difference Equations and Inequalities, Second Edition, Marcel Dekker, New York,2000.

R. P. Agarwal, M. Bohner S. R. Grace, and D. O'Regan, Discrete Oscillation Theory, Hindawi Publ. Corp., New York,2005.

R. P. Agarwal, S. R. Grace and E. Thandapani, Oscillatory and nonoscillatory behavior of second order neutral delay difference equations, Math. Comp. Model., 24 (1996),5--11.

W.T. Li, Oscillation of higher order neutral nonlinear difference equations, Appl. Math. Lett.,11(1998), 1--8.

I. Gyori and G. Ladas, Oscillation Theory of Delay Differential equations With Applications, Clarendon press, Oxford,1991.

S. H. Saker, Oscillation Theory of Delay Differential and Difference Equations: Second and Third Orders, Verlag dr Muler, Germany,2010.

S. H. Saker and D. O'Regan, New oscillation criteria for second order neutral functional dynamic equations via the generalized Riccati substitution, Commu. Nonlin. Sci. Numer. Simu., 16(2011),423--434.

S. H. Saker and D. O'Regan, New oscillation criteria for second order nonlinear neutral functional dynamic equations on time scales via Riccati substitution,

Hirishima J. Math., 42(2012),77--98.

Y. G. Sun and S. H. Saker, Oscillation for second order nonlinear neutral delay difference equations, Appl. Math. Comput., 163(2005),909--918.

X. H. Tang and Y. Liu, Oscillation for nonlinear delay difference equations, Tamkang J. Math., 32(2001),275--280.

E. Thandapani, P. Sundaram, J. R. Graef and P. W. Spikes, Asymptotic properties of solutions of nonlinear second order neutral delay difference equations, Dynamic Sys. Appl., 4(1995),125--136.

E. Thandapani, V. Balasubramanian and J. R. Graef, Oscillation criteria for second order neutral difference equations with negative neutral term, Inter. J. Pure. Appl. Math.,87(2013), 283--292.

E. Thandapani, Z. Liu, R. Arul and P. S. Raja, Oscillation and asymptotic behavior of second order difference equations with nonlinear neutral terms, Appl. Math. E--Notes, 4(2004),59--67.

E. Thandapani and K. Mahalingam, Necessary and sufficient conditions for oscillation of second order neutral delay difference equations, Tamkang J. Math.,34 (2003), 137--145.

D. M. Wang and Z. T. Xu, Oscillation of second order quasilinear neutral delay difference equations, Acta. Math. Appl. Sinica.,27(2011), 93--104.

A. Zafer and R. S. Dahiya, Oscillation of a neutral difference equations, Appl. Math. Lett., 6(1993),71--74.

Z. Zhou, J. Yu and G. Lei, Oscillation for even order neutral difference equations, Korean J. Comput. Appl. Math.,7(2000), 601--610.