On semi-symmetric metric connection in sub-Riemannian manifold
Main Article Content
Abstract
Article Details
References
N. S. Agache and M. R. Chafle, A semi-symmetric non-metric connection on a Riemannian manifold, Indian J. Pure Appl. Math.,23(1992), 399--409.
F. Cantrijn and B. Langerock, Generalized connections over a vector bundle, Differ. Geom. Appl., 18(2003), 295--317.
U. C. De and S. C. Biswas, On a type of semi-symmetric non-metric connection on a Riemannian manifold, Istanbul Univ. Mat. Derg., 55/56(1996/1997), 237--243.
U. C. De and D. Kamila, On a type of semi-symmetric non-metric connection on a Riemannian manifold, J. Indian Inst. Sci., 75(1995), 707--710.
A. Friedmann and J. A. Schouten, Uber die Gecmetrie der Halbsymmerischen Ubertragung, Math. Z., 21(1924),211--233.
F. Y. Fu, X. P. Yang and P. B. Zhao, Geometrical and physical characteristics of a class conformal mapping, J. Geom. Phys., 62(2012), 1467--1479.
Y. X. Liang, Some properties of the semi-symmetric metric connection, J. of Xiamen University (Natural Science). 30(1991), 22--24.
H. Weyl, Gravitation und Elektrizitat, S.-B.Preuss. Akad. Wiss. Berlin(1918), (Translated in The principle of relativity, Dover Books, New York)
K. H. Tan and X. P. Yang, On some sub-Riemannian objects of hypersurfaces in sub-Riemannian manifolds, Bull. Austral. Math. Soc., 10(2004),177--198.
K. Yano, On semi-symmetric metric connection, Rev. Roum. Math. Pureset Appl., 15(1970), 1579--1586.
P. B. Zhao and L. Jiao, Conformal transformations on Carnot Caratheodory spaces, Nihonkal Mathematical J., 17(2006), 167--185.