Lorentz space estimates for vector fields with divergence and curl in Hardy spaces

Main Article Content

Yoshikazu Giga
Xingfei Xiang

Abstract

In this note, we establish the estimate on the Lorentz space $L(3/2,1)$ for vector fields in bounded domains under the assumption that the normal or the tangential component of the vector fields on the boundary vanishes. We prove that the $L(3/2,1)$ norm of the vector field can be controlled by the norms of its divergence and curl in the atomic Hardy spaces and the $L^1$ norm of the vector field itself.

Article Details

How to Cite
Giga, Y., & Xiang, X. (2016). Lorentz space estimates for vector fields with divergence and curl in Hardy spaces. Tamkang Journal of Mathematics, 47(2), 249–260. https://doi.org/10.5556/j.tkjm.47.2016.1932
Section
Papers
Author Biographies

Yoshikazu Giga

Graduate School of Mathematical Sciences, University of Tokyo, Tokyo 153-8914, Japan.

Xingfei Xiang

Department ofMathematics, Tongji University, Shanghai 200092, P. R. China.

References

R. A. Adams, Sobolev Spaces, Academic Press, New York,1975.

J. Bourgain and H. Brezis, On the equation $div Y = f$ and application to control of phases, J. Amer. Math. Soc., 16(2002), 393--426.

J. Bourgain and H. Brezis, New estimates for the Laplacian, the div-curl, and related Hodge systems, C. R. Math. Acad. Sci. Paris, 338(2004), 539--543.

J. Bourgain and H. Brezis, New estimates for elliptic equations and Hodge type systems, J. Eur. Math. Soc., 9(2007), 277--315.

H. Brezis and J. Van Schaftingen,Boundary estimates for elliptic systems with $L^1$-data, Calc. Var. Partial Diff. Eq., 30 (3) (2007), 369--388.

D-C. Chang, G. Dafni and E. M. Stein, Hardy spaces, BMO and boundary value problems for the Laplacian on a smooth domain in $mathbb{R}^N$, Trans. Amer. Math. Soc., 351(4) (1999), 1605--1661.

A.Cianchi and L. Pick, Sobolev embeddings into BMO, VMO and $L^{infty}$, Ark. Mat., 36(1998), 317--340.

M. Cwikel, The dual of weak $L^p$, Ann. Int. Fourier.,25(1975), 81--126.

R.Dautray and J. L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, vol. 3, Springer-Verlag, New York, 1990.

W.G.Faris, Weak Lebesgue spaces and Quantum mechanical binding, Duke Math. J., 43(1976), 365--373.

R. A.Hunt, On $L(p,q)$ spaces, L'Enseignment Math., 12(1996), 249--276.

H. Kozono and T. Yanagisawa, $L^r$-variational inequality for vector fields and the Helmholtz-Weyl decomposition in bounded domains, Indiana Univ. Math. J., 58 (2009),1853--1920.

H. Kozono and T. Yanagisawa, Global Div-Curl lemma on a bounded domains in $mathbb{R}^3$, Journal of Functional Analysis, 256(2009), 3847--3859.

L. Lanzani and E. M.Stein, A note on div curl inequalities, Math. Res. Lett., 12 (2005), 57--61.

V. Maz'ya, Estimates for differential operators of vector analysis involving $L^1$-norm, J. Eur. Math. Soc., 12(2010), 221--240.

I. Mitrea and M. Mitrea, A remark on the regularity of the div-curl system, Proc. Amer. Math. Soc., 137(2009), 1729--1733.

C. G. Simader and H. Sohr, A new approach to the Helmholtz decomposition and the Neumann problem in $L^q$-spaces for bounded and exterior domains, In: G.P. Galdi (Ed.), Mathematical Problems Relating to the Navier-Stokes Equations, in: Ser. Adv. Math. Appl. Sci., World Scientific, Singapore, New Jersey, London, Hong Kong, 1992, pp. 1--35.

C. G. Simader and H. Sohr, The Dirichlet Problem for the Laplacian in Bounded and Unbounded Domains, Pitman Res. Notes Math. Ser., vol. 360,Longman, 1996.

E.M. Stein, Harmonic Analysis: Real Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton NJ, 1993.

J. Van Schaftingen, Estimates for $L^1$ vector fields, C. R. Math. Acad. Sci.Paris, 339(2004), 181--186.

J. Van Schaftingen, Estimates for $L^1$ vector fields with a second order condition, Acad. Roy. Belg.Bull. Cl. Sci., 15(2004), 103--112.

J. Van Schaftingen, Estimates for $L^1$ vector fields under higher-order differential conditions, J. Eur. Math. Soc., 10(2008), 867--882.

J. Van Schaftingen, Limiting fractional and Lorentz space estimates of differential forms, Proc. Amer. Math. Soc., 138 (2010), 235--240.

W. von Wahl, Estimating $nabla u$ by $div u$ and $curl u$, Math. Methods Appl. Sci., 15(1992), 123--143.

X. F. Xiang, $L^{3/2}$-Estimates of vector fields with $L^1$ curl in a bounded domain, Calc. Var. Partial Diff. Eq.46(2013), 55--74.