Hermite-Hadamard type inequalities for (p1,h1)-(p2,h2)-convex functions on the co-ordinates

Authors

  • Wen Gui Yang

DOI:

https://doi.org/10.5556/j.tkjm.47.2016.1958

Keywords:

Hermite-Hadamard type inequalities, (p1, h1)-(p2, h2 )-convex, co-ordinates, product of functions

Abstract

In this paper, we establish some Hermite-Hadamard type inequalities for $(p_1,h_1)$-$(p_2,h_2)$-convex function on the co-ordinates. Furthermore, some inequalities of Hermite-Hadamard type involving product of two convex functions on the co-ordinates are also considered. The results presented here would provide extensions of those given in earlier works.

Author Biography

Wen Gui Yang

Ministry of Public Education, Sanmenxia Polytechnic, Sanmenxia, Henan 472000, China.

References

J. Pevcaric, F. Proschan and Y. L. Tong, Convex functions, partial ordering and statistical applications, Academic Press, New York, 1991.

S. S. Dragomir and C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000.

S. S. Dragomir, Some new Hermite-Hadamard's type fractional integral inequalities, J. Comput. Anal. Appl., 18(2015), 655--661.

M. A. Noor, G. Cristescu and M. U. Awan, Generalized fractional Hermite-Hadamard inequalities for twice differentiable $s$-convex functions, Filomat

(2015), 507--585.

I. Iscan and S. Wu, Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals, Appl. Math. Comput., 238(2014), 237--244.

F. Chen and S. Wu, Some Hermite-Hadamard type inequalities for harmonically $s$-convex functions, Sci. World J., 2014(2014), 279158.

W. Li and F. Qi, Some Hermite-Hadamard type inequalities for functions whose $n$-th derivatives are $(alpha, m)$-convex, Filomat, 27(2013), 1575--1582.

L. Chun and F. Qi, Integral inequalities of Hermite-Hadamard type for functions whose third derivatives are convex, J. Inequal. Appl., 2013(2013), 451.

J. Wang, J. Deng and M. Fekan, Hermite-Hadamard-type inequalities for $r$-convex functions based on the use of Riemann-Liouville fractional integrals, Ukrain.

Math. J., 65(2013), 193--211.

J. Wang et al., Hermite-Hadamard-type inequalities for Riemann-Liouville fractional integrals via two kinds of convexity, Appl. Anal., 92(2013), 2241--2253.

M. Z. Sarikaya et al., Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Modelling, 57(2013), 2403--2407.

E. Set et al., On new inequalities of Hermite-Hadamard-Fejer type for convex functions via fractional integrals, Appl. Math. Comput., 259(2015), 875--881.

S. S. Dragomir and S. Fitzpatrick, The Hadamard's inequality for s-convex functions in the second sense, Demonstr. Math., 32(1999), 687--696.

M. Z. Sarikaya and A. Saglam and H. Yildirim, On some Hadamard-type inequalities for $h$-convex functions, J. Math. Inequal., 2(2008), 335--341.

Z. Fang and R. Shi, On the $(p,h)$-convex function and some integral inequalities, J. Inequal. Appl., 2014(2014), 45.

S. S. Dragomir, On the Hadamard's inequality for convex functions on the co-ordinates in a rectangle from the plane, Taiwan. J. Math., 5(2001), 775--788.

M. Alomari and M. Darus, The Hadamard's inequality for $s$-convex function of 2-variables on the co-ordinates, Int. J. Math. Anal., 2(2008), 629--638.

S. Bai and F. Qi, Some inequalities for $(s_1,m_1)$-$(s_2,m_2)$-convex functions on the co-ordinates, Glob. J. Math. Anal., 1(2013), 22--28.

M. E. Odemir, C. Yildiz and A. O. Akademir, On the co-ordinated convex functions, Appl. Math. Infor. Sci., 8(2014), 1085-1091.

D. Y. Hwang, K. L. Tseng and G. S. Yang, Some Hadamard's inequalities for co-ordinated convex functions in a rectangle from the plane, Taiwan. J. Math., 11(2007), 63--73.

B. Xi, J. Hua and F. Qi, Hermite-Hadamard type inequalities for extended s-convex functions on the co-ordinates in a rectangle, J. Appl. Anal., 20(2014), 29--39.

M. A. Latif and S. S. Dragomir, On some new inequalities for differentiable co-ordinated convex functions, J. Inequal. Appl., 2012(2012), 28.

M. E. Odemir, M. A. Latif and A. O. Akademir, On some Hadamard-type inequalities for product of two $s$-convex functions on the co-ordinates, J.

Inequal. Appl., 2012(2012), 21.

M. A. Noor, K. I. Noor and M. U. Awan, Integral inequalities for coordinated Harmonically convex functions, Complex Var. Elliptic Equ. (2014), http://dx.doi.org/10.1080/17476933.2014.976814.

M. Matloka, On some Hadamard-type inequalities for $(h_1, h_2)$-preinvex functions on the co-ordinates, J. Inequal. Appl., 2013(2013), 227.

M. A. Latif and M. Alomari, Hadamard-type inequalities for product two convex functions on the co-ordinates, Int. Math. Forum, 4(2009),2327--2338.

M. E. Odemir and A. O. Akademir, On the hadamard type inequalities involving product of two convex functions on the co-ordinates, Tamkang J. Math.,46(2015), 129--142.

Downloads

Published

2016-09-30

How to Cite

Yang, W. G. (2016). Hermite-Hadamard type inequalities for (p1,h1)-(p2,h2)-convex functions on the co-ordinates. Tamkang Journal of Mathematics, 47(3), 289-322. https://doi.org/10.5556/j.tkjm.47.2016.1958

Issue

Section

Papers