On certain integral formulas involving the product of Bessel function and Jacobi polynomial
Main Article Content
Abstract
Article Details
References
E. M. Wright, The asymptotic expansion of the generalized hypergeometric functions, J. London Math. Soc., 10(1935), 286--293.
E. M. Wright, The asymptotic expansion of integral functions defined by Taylor series, Philos. Trans. Roy. Soc. London, A238(1940), 423--451.
E. M. Wright, {The asymptotic expansion of the generalized hypergeometric function II, Proc. Lond. Math. Soc.(2), 46(1940), 389--408.
E. D. Rainville, Special functions, The Macmillan Company, New York, 2013.
F. Oberhettinger, Tables of Mellin Transforms, Springer, New York, 1974.
H. M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publisher, Amsterdam, London and New York, 2012.
H. M. Srivastava and H. L. Manocha, A Treatise on generating functions, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, 1984.
H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane, and Toronto, 1985.
J. Choi, P. Agarwal, S. Mathur and S. D. Purohit, Certain new integral formulas involving the generalized Bessel functions, Bull. Korean Math. Soc., 51(2014),995--1003.
J. Choi and P. Agarwal, Certain unified integrals involving a product of Bessel functions of first kind, Honam Mathematical J. (4),35(2013), 667--677.
J. Choi and P. Agarwal, Certain Unified Integrals Associated with Bessel Functions, Boundary Value Problems, 2013(2013), no. 95, 9 pp.
J. Choi, A. Hasnove, H. M. Srivastava and M. Turaev, Integral representations for Srivastava's triple hypergeometric functions, Taiwanese J. Math., 15(2011), 2751--2762.
P. Agarwal, S. Jain, S. Agarwal and M. Nagpal, On a new class of integrals involving Bessel functions of the first kind, Communication in Numerical Analysis, 2014(2014), 1--7.
S. Ali, On some new unified integrals, Adv. Comput. Math. Appl., 1(2012), 151--153.
Y. A. Brychkov, Handbook of Special Functions, Derivatives, Integrals, Series and Other Formulas, CRC Press, Taylor and Francis Group, Boca Raton, London, and New York, 2008.