Diophantine quadruples of numbers whose elements are in proportion
Main Article Content
Abstract
Article Details
References
A.Baker and H.~Davenport, The equations $3x^2 - 2 = y^2$ and $8x^2 - 7 = z^2$, Quart.J.Math.Oxford, 20(1969),129--137.
A.Dujella, On Diophantine quintuples,Acta Arith., 81(1997),69--70.
A.Dujella, Diophantine quadruples and quintuples modulo 4, Number Theory Discrete Math. 4(1998),160--164.
A.Dujella and A.M.S. Ramasamy, Fibonacci numbers and sets with the property D(4),Bulletin of Belgian Mathematical Society Simon Stevin,12(2005),401--412.
A.Dujella and N.~Saradha, Diophantine m-tuples with elements in arithmetic progressions, Indag.Math.(N.S.), 25(2014),131--136.
M.Gardner, Mathematical games, Scientific American,214(1967), 119pp.
S.P.Mohanty and A.M.S.Ramasamy, The simultaneous Diophantine equations $5y^2-20=x^2$ and $2y^2+1=z^2 $,Journal of Number Theory,18(1984),356--359.
S.P.Mohanty and A.M.S.~Ramasamy, On $P_{r,k}$ sequences, Fibonacci Quart., 23(1985),36--44.
S.P.Mohanty and A.M.S.Ramasamy, The characteristic number of two simultaneous Pell's equations and its application, Simon Stevin, 59(1985),203--214.
T.Nagell, Introduction to Number Theory, Wiley,New York,1951.
A.M.S.~Ramasamy,A remarkable sequence,Banyan Mathematical Journal, 2(1995),69--76.
A.M.S.Ramasamy, Sets, sequences and polynomials linked with a question of Diophantus,Bulletin of Kerala Mathematics Association,4(2007),109--125.
A.M.S.Ramasamy and D.Saraswathy,A non-extendable Diophantine quadruple arising from a triple of Lucas numbers, Involve,5(2012),257--271.
J.Roberts, Lure of the Integers,The Mathematical Association of America, Washington D.C.,1992.