Inequalities for some classical integral transforms

Authors

  • Piyush Kumar Bhandari
  • Sushil Kumar Bissu

DOI:

https://doi.org/10.5556/j.tkjm.47.2016.1981

Keywords:

A form of Cauchy-Bunyakovsky-Schwarz inequality, Laplace transform, Fourier transform, Convolution theorem, Mellin transform and Hankel transform.

Abstract

By using a form of the Cauchy-Bunyakovsky-Schwarz inequality, we establish new inequalities for some classical integral transforms such as Laplace transform,Fourier transform, Fourier cosine transform, Fourier sine transform, Mellin transform and Hankel transform.

Author Biographies

Piyush Kumar Bhandari

Department of Mathematics, Shrinathji Institute of Technology & Engineering, Nathdwara, Rajasthan 313301, India.

Sushil Kumar Bissu

Department ofMathematics, Government College of Ajmer, Ajmer, Rajasthan 305004, India. E-mail: susilkbissu@gmail.com

References

D. S. Mitrinovic, J. E. Pecaric and A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic, Dordrecht, 1993.

D. K. Callebaut, Generalization of the Cauchy-Schwartz inequality, J. Math. Anal. Appl., 12(1965), 491--494.

W. L. Steiger, On a generalization of the Cauchy-Schwarz inequality, Amer. Math. Monthly, 76(1969), 815--816.

L. Zheng, Remark on a refinement of the Cauchy-Schwartz inequality, J. Math. Anal. Appl., 218(1998), 13--21.

H. Alzer, On the Cauchy-Schwartz inequality, J. Math. Anal. Appl., 234(1999), 6--14.

M. Masjed-Jamei, S. S. Dragomir and H. M. Srivastava, Some generalizations of the Cauchy-Schwarz and the Cauchy-Bunyakovsky inequalities involving four free parameters and their applications, Math. Computer Modeling, 49(2009), 1960--1968.

Cristinel Mortici, New Inequalities for some special functions via the Cauchy-Bunyakovsky-Schwarz inequality}, Tamkang Journal of Mathematics, 42(2011), 53--57.

M. Masjed-Jamei, A functional generalization of the Cauchy-Schwarz inequality and some subclasses, Appl. Math. Lett., 22(2009), 1335--1339.

A. Laforgia and P. Natalini, Turan-type inequalities for some special functions, J. Inequal. Pure Appl. Math., 27(2006), Issue 1, Art. 32.

M. Abramowitz and I. A. Stegun (Eds.), Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Dover Publications, Inc., New York, 1965.

Downloads

Published

2016-09-30

How to Cite

Bhandari, P. K., & Bissu, S. K. (2016). Inequalities for some classical integral transforms. Tamkang Journal of Mathematics, 47(3), 351-356. https://doi.org/10.5556/j.tkjm.47.2016.1981

Issue

Section

Papers