Twin signed Roman domination numbers in directed graphs
DOI:
https://doi.org/10.5556/j.tkjm.47.2016.2035Keywords:
twin signed Roman dominating function, twin signed Roman domination number, directed graphAbstract
Let $D$ be a finite simple digraph with vertex set $V(D)$ and arc set $A(D)$. A twin signed Roman dominating function (TSRDF) on the digraph $D$ is a function $f:V(D)\rightarrow\{-1,1,2\}$ satisfying the conditions that (i) $\sum_{x\in N^-[v]}f(x)\ge 1$ and $\sum_{x\in N^+[v]}f(x)\ge 1$ for each $v\in V(D)$, where $N^-[v]$ (resp. $N^+[v]$) consists of $v$ and all in-neighbors (resp. out-neighbors) of $v$, and (ii) every vertex $u$ for which $f(u)=-1$ has an in-neighbor $v$ and an out-neighbor $w$ for which $f(v)=f(w)=2$. The weight of an TSRDF $f$ is $\omega(f)=\sum_{v\in V(D)}f(v)$. The twin signed Roman domination number $\gamma_{sR}^*(D)$ of $D$ is the minimum weight of an TSRDF on $D$. In this paper, we initiate the study of twin signed Roman domination in digraphs and we present some sharp bounds on $\gamma_{sR}^*(D)$. In addition, we determine the twin signed Roman domination number of some classes of digraphs.References
H. Abdollahzadeh Ahangar, J. Amjadi, S. M. Sheikholeslami, L. Volkmann and Y. Zhao, Signed Roman edge domination numbers in graphs, J. Comb.
Optim., 31(2016), 333--346.
H. Abdollahzadeh Ahangar, M. A. Henning, Y. Zhao, C. Lowenstein and V. Samodivkin, Signed Roman domination in graphs, J. Comb. Optim., 27(2014), 241--255.
S. Arumugam, K. Ebadi and L. Sathikala, Twin domination and twin irredudance in digraphs, Appl. Anal. Discrete Math., 7(2013), 275--284.
M. Atapour, A. Bodaghli and S. M. Sheikholeslami, Twin signed total domination numbers in directed graphs, Ars Combin. (to appear)
E. W. Chambers, B. Kinnersley, N. Prince and D. B. West, Extremal problems for Roman domination, SIAM J. Discrete Math., 23(2009), 1575--1586.
G. Chartrand, P. Dankelmann, M. Schultz, H.C. Swart, Twin domination in digraphs, Ars Combin., 67(2003), 105--114.
G. Chartrand, D. W. VanderJagt, B. Q. Yue, Orientable domination in graphs, Congr. Numer., 119(1996), 51--63.
S. M. Sheikholeslami and L. Volkmann,Signed Roman domination in digraphs, J. Comb. Optim., 30(2015), 456--467.
S. M. Sheikholeslami and L. Volkmann, The signed Roman domatic number of a digraph, Electronic Journal of Graph Theory and Applications, 3(2015), 85--93.
D. B. West, Introduction to Graph Theory, Prentice-Hall, Inc, 2000.