Twin signed Roman domination numbers in directed graphs

Main Article Content

Seyed Mahmoud Sheikholeslami
Asghar Bodaghli
Lutz Volkmann

Abstract

Let $D$ be a finite simple digraph with vertex set $V(D)$ and arc set $A(D)$. A twin signed Roman dominating function (TSRDF) on the digraph $D$ is a function $f:V(D)\rightarrow\{-1,1,2\}$ satisfying the conditions that (i) $\sum_{x\in N^-[v]}f(x)\ge 1$ and $\sum_{x\in N^+[v]}f(x)\ge 1$ for each $v\in V(D)$, where $N^-[v]$ (resp. $N^+[v]$) consists of $v$ and all in-neighbors (resp. out-neighbors) of $v$, and (ii) every vertex $u$ for which $f(u)=-1$ has an in-neighbor $v$ and an out-neighbor $w$ for which $f(v)=f(w)=2$. The weight of an TSRDF $f$ is $\omega(f)=\sum_{v\in V(D)}f(v)$. The twin signed Roman domination number $\gamma_{sR}^*(D)$ of $D$ is the minimum weight of an TSRDF on $D$. In this paper, we initiate the study of twin signed Roman domination in digraphs and we present some sharp bounds on $\gamma_{sR}^*(D)$. In addition, we determine the twin signed Roman domination number of some classes of digraphs.

Article Details

How to Cite
Sheikholeslami, S. M., Bodaghli, A., & Volkmann, L. (2016). Twin signed Roman domination numbers in directed graphs. Tamkang Journal of Mathematics, 47(3), 357–371. https://doi.org/10.5556/j.tkjm.47.2016.2035
Section
Papers
Author Biographies

Seyed Mahmoud Sheikholeslami

Department ofMathematics, Azarbaijan ShahidMadani University, Tabriz, I.R. Iran.

Asghar Bodaghli

Department ofMathematics, Azarbaijan ShahidMadani University, Tabriz, I.R. Iran.

Lutz Volkmann

Lehrstuhl II fürMathematik, RWTH Aachen University, 52056 Aachen, Germany.

References

H. Abdollahzadeh Ahangar, J. Amjadi, S. M. Sheikholeslami, L. Volkmann and Y. Zhao, Signed Roman edge domination numbers in graphs, J. Comb.

Optim., 31(2016), 333--346.

H. Abdollahzadeh Ahangar, M. A. Henning, Y. Zhao, C. Lowenstein and V. Samodivkin, Signed Roman domination in graphs, J. Comb. Optim., 27(2014), 241--255.

S. Arumugam, K. Ebadi and L. Sathikala, Twin domination and twin irredudance in digraphs, Appl. Anal. Discrete Math., 7(2013), 275--284.

M. Atapour, A. Bodaghli and S. M. Sheikholeslami, Twin signed total domination numbers in directed graphs, Ars Combin. (to appear)

E. W. Chambers, B. Kinnersley, N. Prince and D. B. West, Extremal problems for Roman domination, SIAM J. Discrete Math., 23(2009), 1575--1586.

G. Chartrand, P. Dankelmann, M. Schultz, H.C. Swart, Twin domination in digraphs, Ars Combin., 67(2003), 105--114.

G. Chartrand, D. W. VanderJagt, B. Q. Yue, Orientable domination in graphs, Congr. Numer., 119(1996), 51--63.

S. M. Sheikholeslami and L. Volkmann,Signed Roman domination in digraphs, J. Comb. Optim., 30(2015), 456--467.

S. M. Sheikholeslami and L. Volkmann, The signed Roman domatic number of a digraph, Electronic Journal of Graph Theory and Applications, 3(2015), 85--93.

D. B. West, Introduction to Graph Theory, Prentice-Hall, Inc, 2000.

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.