# Extreme Monophonic Graphs and Extreme Geodesic Graphs

## Main Article Content

## Abstract

## Article Details

*Tamkang Journal of Mathematics*,

*47*(4), 393–404. https://doi.org/10.5556/j.tkjm.47.2016.2045

## References

F. Buckley and F. Harary, Distance in Graphs, Addison-Wesley, Redwood City, CA, 1990.

G. Chartrand, F. Harary and P. Zhang, On the geodetic number of a graph, Networks, 39(2002), 1--6.

G. Chartrand and P. Zhang, Extreme Geodesic Graphs, Czechoslova Mathematical Journal, 52(2002), 771--780.

F.Harary, Graph Theory, Addison-Wesley, 1969.

F. Harary, E. Loukakis and C. Tsouros, The geodetic number of a graph, Math. Comput. Modeling, 17(1993), 87--95.

P. A. Ostrand, Graphs with specified radius and diameter, Discrete Math., 4(1973), 71-75.

A. P. Santhakumaran and P. Titus, Monophonic Distance in Graphs, Discrete Mathematics, Algorithms and Applications, 3(2011), 159--169.

A. P. Santhakumaran and P. Titus, A note on monophonic distance in graphs, Discrete Mathematics, Algorithms and Applications, 4(2012).

A. P. Santhakumaran, P. Titus and K. Ganesamoorthy, On the monophonic number of a graph, J. Appl. Math. & Informatics, 32(2014),255--266.