Global existence and quenching for a damped hyperbolic MEMS equation with the fringing field


  • Tosiya Miyasita



MEMS, damped hyperbolic, fringing field, local solution, global solution, quenching


We study a damped hyperbolic MEMS equation with the fringing field.It arises in the Micro-Electro Mechanical System(MEMS) devices. We give some criteria for global existence and quenching of the solution.First we establish a time-local solution by a contraction mapping theorem. This procedure is standard.Next we show that there exists a global solution for the small parameter and initial value. Finally, we deal with the quenching result for the large parameter.

Author Biography

Tosiya Miyasita

250-201 Imamichi-cho, Kyoto 605-0042, Japan.


H. Brezis, Analyse fonctionnelle,Masson, Paris, 1983.

C. Y. Chan and K. K. Nip, On the blow-up of $vert u_{tt} vert$ at quenching for semilinear Euler-Poisson-Darboux equations, Mat. Apl. Comput.,14(1995),185--190.

P. H. Chang and H. A. Levine, The quenching of solutions of semilinear hyperbolic equations, SIAM J. Math. Anal., 12(1981),893--903.

J. Davila and J. Wei, Point ruptures for a MEMS equation with fringing field,Comm. Partial Differential Equations, 37(2012),1462--1493.

P. Esposito, Compactness of a nonlinear eigenvalue problem with a singular nonlinearity, Commun. Contemp. Math.,10(2008),17--45.

P. Esposito and N. Ghoussoub, Uniqueness of solutions for an elliptic equation modeling MEMS, Methods Appl. Anal., 15(2008),341--353.

P. Esposito, N. Ghoussoub and Y. Guo, Compactness along the branch of semistable and unstable solutions for an elliptic problem with a singular nonlinearity, Comm. Pure Appl. Math., 60(2007),1731--1768.

P. Esposito, N. Ghoussoub and Y. Guo, Mathematical analysis of partial differential equations modeling electrostatic MEMS, Courant Lecture Notes in Mathematics,

, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2010.

G. Flores, G. Mercado, J. A. Pelesko and N. Smyth, Analysis of the dynamics and touchdown in a model of electrostatic MEMS, SIAM J. Appl. Math.,67(2006/07),


M. Fukunishi and T. Watanabe, Variational approach to MEMS model with fringing field, J. Math. Anal. Appl., 423(2015),1262--1283.

N. Ghoussoub and Y. Guo, On the partial differential equations of electrostatic MEMS devices: stationary case, SIAM J. Math. Anal., 38(2006/07), 1423--1449.

N. Ghoussoub and Y. Guo, On the partial differential equations of electrostatic MEMS devices. II. Dynamic case, NoDEA Nonlinear Differential Equations Appl.,15(2008), 115--145.

J.-S. Guo, Quenching problem in nonhomogeneous media, Differential Integral Equations, 10(1997), 1065-1074.

J.-S. Guo, B. Hu and C.-J. Wang, A nonlocal quenching problem arising in a micro-electro mechanical system, Quart. Appl. Math.,67(2009),725--734.

J.-S. Guo and B.-C. Huang, Hyperbolic quenching problem with damping in the micro-electro mechanical system device, Discrete Contin. Dyn. Syst. Ser. B, 19(2014),419--434.

J.-S. Guo and N. I. Kavallaris, On a nonlocal parabolic problem arising in electrostatic MEMS control, Discrete Contin. Dyn. Syst.,32(2012),1723--1746.

J.-S. Guo and P. Souplet, No touchdown at zero points of the permittivity profile for the MEMS problem, SIAM J. Math. Anal.,47(2015),614--625.

Y. Guo, On the partial differential equations of electrostatic MEMS devices. III. Refined touchdown behavior, J. Differential Equations, 244(2008), 2277--2309.

Y. Guo, Global solutions of singular parabolic equations arising from electrostatic MEMS, J. Differential Equations, 245(2008),809--844.

K. M. Hui, The existence and dynamic properties of a parabolic nonlocal MEMS equation, Nonlinear Anal.,74(2011),298--316.

S. Kaplan, On the growth of solutions of quasi-linear parabolic equations, Comm. Pure Appl. Math.,16(1963), 305--330.

N. I. Kavallaris, A. A. Lacey, C. V. Nikolopoulos and D. E. Tzanetis, A hyperbolic non-local problem modelling MEMS technology, Rocky Mountain J. Math., 41(2011),


N. I. Kavallaris, T. Miyasita and T. Suzuki, Touchdown and related problems in electrostatic MEMS device equation, NoDEA Nonlinear Differential Equations Appl.,


P. Laurenc cot and C. Walker, A fourth-order model for MEMS with clamped boundary conditions, Proc. Lond. Math. Soc. (3),109(2014),1435--1464.

H. A. Levine, Quenching, nonquenching, and beyond quenching for solution of some parabolic equations, Ann. Mat. Pura Appl.,155 (1989),243--260.

H. A. Levine and M. W. Smiley, Abstract wave equations with a singular nonlinear forcing term, J. Math. Anal. Appl., 103(1984),409--427.

C. Liang, J. Li and K. Zhang, On a hyperbolic equation arising in electrostatic MEMS, J. Differential Equations, 256(2014),503--530.

C. Liang and K. Zhang, Global solution of the initial boundary value problem to a hyperbolic nonlocal MEMS equation, Comput. Math. Appl., 67(2014), 549--554.

A. E. Lindsay and M. J. Ward, Asymptotics of some nonlinear eigenvalue problems for a MEMS capacitor. I. Fold point asymptotics, Methods Appl. Anal., 15(2008), 297--325.

Z. Liu and X. Wang, On a parabolic equation in MEMS with fringing field, Arch. Math. (Basel), 98(2012), 373--381.

T. Miyasita, Global existence of radial solutions of a hyperbolic MEMS equation with nonlocal term, Differ. Equ. Appl., 7(2015), 169--186.

F. K. N'gohisse and T. K. Boni, Quenching time of some nonlinear wave equations, Arch. Math. (Brno), 45 (2009), 115--124.

J. A. Pelesko, Mathematical modeling of electrostatic MEMS with tailored dielectric properties, SIAM J. Appl. Math., 62 (2001/02), 888--908.

J. A. Pelesko and D. H. Bernstein, Modeling MEMS and NEMS, Chapman & Hall/CRC, Boca Raton, FL, 2003.

J. A. Pelesko and T. A. Driscoll, The effect of the small-aspect-ratio approximation on canonical electrostatic MEMS models, J. Engrg. Math., 53(2005),239--252.

J. A. Pelesko and A. A. Triolo, Nonlocal problems in MEMS device control, J. Engrg. Math., 41(2001),345--366.

M. Reed, Abstract non-linear wave equations, Lecture Notes in Mathematics, 507, Springer-Verlag, Berlin-New York, 1976.

R. A. Smith, On a hyperbolic quenching problem in several dimensions, SIAM J. Math. Anal., 20(1989),1081--1094.

Q. Wang, Estimates for the quenching time of a MEMS equation with fringing field, J. Math. Anal. Appl.,405(2013),135--147.

J. Wei and D. Ye, On MEMS equation with fringing field, Proc. Amer. Math. Soc., 138(2010),1693--1699.

S. Zheng, Nonlinear parabolic equations and hyperbolic-parabolic coupled systems, Pitman Monographs and Surveys in Pure and Applied Mathematics, 76, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1995.




How to Cite

Miyasita, T. (2017). Global existence and quenching for a damped hyperbolic MEMS equation with the fringing field. Tamkang Journal of Mathematics, 48(1), 31–47.