Normal edge-transitive and \frac{1}{2}-arc-transitive cayley graphs on non-abelian groups of odd order 3pq, p and q are primes
Main Article Content
Abstract
Article Details
References
A. R. Ashrafi and B. Soleimani, Normal edge$-$transitive and $frac{1}{2}-$arc$-$transitive Cayley graphs on non$-$abelian groups of order $2pq$, $p > q$ are primes,Int. J. Group Theory, 5(2016),1--8.
N. Biggs, Algeraic Graph Theory, Cambridge University Press, Cambridge, 1974.
M. R. Darafsheh and A. Assari, Normal edge-transitive Cayley graphs on non-abelian groups of order $4p$, where $p$ is a prime number,Sci. China Math., 56(2013), 213--219.
X. G. Fang, C. H. Li and M. Y. Xu,On edge-transitive Cayley graphs of valency four, European J. Combin., 25(2004), 1107--1116.
M. Ghorbani and F. Nowroozi Laraki, Automorphism group of groups of order $pqr$, Alg. Str. Appl., 1 (2014), 49--56.
C. D. Godsil, On the full automorphism group of a graph, Combinatorica, 1(1981), 243--256.
S. -T. Guo and Y.-Q. Feng, Tetravalent symmetric graphs of order $9p$, J. Korean Math. Soc.,49(2012), 1111--1121.
P. C. Houlis, Quotients of normal edge-transitive Cayley graphs, MSc Thesis, University of Western Australia, 1998.
G. James and M. Liebeck, Representations and characters of groups, Second edition, Cambridge University Press, New York, 2001.
C. H. Li, Z. P. Lu and H. Zhang, Tetravalent edge-transitive Cayley graphs with odd number of vertices, J. Combin. Theory Ser. B, 96(2006), 164--181.
C. E. Praeger, Finite normal edge-transitive Cayley graphs, Bull. Aust. Math. Soc., 60(1999), 207--220.
C. Q. Wang, D. J. Wang and M. Y. Xu, On normal Cayley graphs of finite groups, Sci. China Ser. A, 28(1998), 131--139.
M. Y. Xu, Automorphism groups and isomorphisms of Cayley digraphs, Discrete Math., 182(1998), 309--319.