Normal edge-transitive and \frac{1}{2}-arc-transitive cayley graphs on non-abelian groups of odd order 3pq, p and q are primes

Main Article Content

Ali Reza Ashrafi
Bijan Soleimani

Abstract

Suppose $p$ and $q$ are odd prime numbers. In this paper, the connected Cayley graph of groups of order $3pq$, for primes $p$ and $q$, are investigated and all connected normal $\frac{1}{2}-$arc-transitive Cayley graphs of group of these orders will be classified.

Article Details

How to Cite
Ashrafi, A. R., & Soleimani, B. (2018). Normal edge-transitive and \frac{1}{2}-arc-transitive cayley graphs on non-abelian groups of odd order 3pq, p and q are primes. Tamkang Journal of Mathematics, 49(3), 183–194. https://doi.org/10.5556/j.tkjm.49.2018.2169
Section
Papers
Author Biographies

Ali Reza Ashrafi

Department of Pure Mathematics, Faculty ofMathematical Sciences, University of Kashan, Kashan 87317-53153,I. R. Iran.

Bijan Soleimani

Department of PureMathematics, Faculty of Mathematical Sciences, University of Kashan, Kashan 87317-53153, I. R. Iran.

References

A. R. Ashrafi and B. Soleimani, Normal edge$-$transitive and $frac{1}{2}-$arc$-$transitive Cayley graphs on non$-$abelian groups of order $2pq$, $p > q$ are primes,Int. J. Group Theory, 5(2016),1--8.

N. Biggs, Algeraic Graph Theory, Cambridge University Press, Cambridge, 1974.

M. R. Darafsheh and A. Assari, Normal edge-transitive Cayley graphs on non-abelian groups of order $4p$, where $p$ is a prime number,Sci. China Math., 56(2013), 213--219.

X. G. Fang, C. H. Li and M. Y. Xu,On edge-transitive Cayley graphs of valency four, European J. Combin., 25(2004), 1107--1116.

M. Ghorbani and F. Nowroozi Laraki, Automorphism group of groups of order $pqr$, Alg. Str. Appl., 1 (2014), 49--56.

C. D. Godsil, On the full automorphism group of a graph, Combinatorica, 1(1981), 243--256.

S. -T. Guo and Y.-Q. Feng, Tetravalent symmetric graphs of order $9p$, J. Korean Math. Soc.,49(2012), 1111--1121.

P. C. Houlis, Quotients of normal edge-transitive Cayley graphs, MSc Thesis, University of Western Australia, 1998.

G. James and M. Liebeck, Representations and characters of groups, Second edition, Cambridge University Press, New York, 2001.

C. H. Li, Z. P. Lu and H. Zhang, Tetravalent edge-transitive Cayley graphs with odd number of vertices, J. Combin. Theory Ser. B, 96(2006), 164--181.

C. E. Praeger, Finite normal edge-transitive Cayley graphs, Bull. Aust. Math. Soc., 60(1999), 207--220.

C. Q. Wang, D. J. Wang and M. Y. Xu, On normal Cayley graphs of finite groups, Sci. China Ser. A, 28(1998), 131--139.

M. Y. Xu, Automorphism groups and isomorphisms of Cayley digraphs, Discrete Math., 182(1998), 309--319.

Most read articles by the same author(s)