A subclass of harmonic functions with negative coefficients defined by Dziok-Srivastava operator

Main Article Content

G. Murugusundaramoorthy
K. Vijaya
Basem Aref Frasin

Abstract

Making use of the Dziok-Srivastava operator, we introduce the class $% \mathcal{R}_{\overline{\mathcal{H}}}^{p,q}([\alpha _1],\lambda ,\gamma )$ of complex valued harmonic functions. We investigate the coefficient bounds, distortion inequalities , extreme points and inclusion results for this class.

Article Details

How to Cite
Murugusundaramoorthy, G., Vijaya, K., & Frasin, B. A. (2011). A subclass of harmonic functions with negative coefficients defined by Dziok-Srivastava operator. Tamkang Journal of Mathematics, 42(4), 463–473. https://doi.org/10.5556/j.tkjm.42.2011.231
Section
Papers
Author Biographies

G. Murugusundaramoorthy, School of Advanced Sciences and Humanities, V I T University, Vellore -632014,T.N.,India.

Department of Math.

Rank. Prof.

K. Vijaya, School of Advanced Sciences and Humanities, V I T University, Vellore -632014,T.N.,India.

Department of Math

Basem Aref Frasin, Department ofMathematics, Al al-Bayt University, P.O. Box: 130095 Mafraq, Jordan.

Department of Mathematics

rank: Associate Prof

References

B. C. Carlson, Special Functions of Applied Mathematics, Academic Press, New York, 1977.

B. C. Carlson and S. B.Shaffer, Starlike and prestarlike hypergeometric functions, SIAM, J. Math. Anal.,15 (2002), 737--745.

J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Aci. Fenn. Ser. A. I. Math.,9 (1984), 3--25.

J. Dziok and H. M. Srivastava, Certain subclasses of analytic functions associated with the generalized hypergeometric function, Integral Transform Spec. Funct., 14 (2003), 7--18.

J. M. Jahangiri and H. Silverman, Harmonic univalent functions with varying arguments, Internat. J. Appl.

Math.,8 (2002), 267--275.

J. M. Jahangiri, Harmonic functions starlike in the unit disc, J. Math. Anal. Appl., 235 (1999), 470--477.

J. M. Jahangiri, G. Murugusundaramoorthy and K. Vijaya, Starlikeness of Rucheweyh type harmonic

univalent functions, J. Indian Acad. Math.,26 (2004), 191--200.

J. M. Jahangiri, G. Murugusundaramoorthy and K. Vijaya, Salagean-Type harmonic univalent functions, Southwest J. Pure Appl. Math.,2 (2002),77--82.

H. A. Al-Kharsani and R. A. Al-Khal, Univalent harmonic functions, J. Inequal. Pure Appl. Math.,8 (2007), Issue 2, Art. 59, 8 pp.

M. "{O}zt"{u}rk, S. Yalc{c}in and M. Yamankaradenz, Convex subclass of harmonic starlike functions, Appl. Math. Comp.,154, 2(5) (2004), 449--459.

S. Ponnusamy and S. Sabapathy, Geometric properties of generalized hypergeometric functions, Ramanujan J.,1 (1997), 187--210.

E. D. Rainville, Special Functions, Chelsea Publishing Company, New York 1960.

S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc.,49 (1975), 109--115.

H. Silverman, Harmonic univalent functions with negative coefficients, J. Math. Anal. Appl.,220 (1998), 283-289.

H. M. Srivastava and S. Owa, Some characterization and distortion theorems involving fractional calculus, generalized hypergeometric functions, Hadamard products, linear operators and certain subclasses of analytic functions, Nagoya Math. J.,106 (1987), 1--28.

K. Vijaya, Studies on certain subclasses of harmonic functions, Ph.D.Thesis, VIT University, September 2006.