Generalized k–uniformly convex harmonic functions with negative coefficients
Main Article Content
Abstract
Article Details
References
P. L. Duren. Univalent Functions. Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
J. Clunie and T. Sheil Small. Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A I Math., 39(1984), 3--25.
J. M. Jahangiri, Coefficient bounds and univalent criteria for harmonic functions with negative coefficients, Ann. Univ. Marie-Curie Sklodowska Sect. A, 52(1998), 57--66.
J. M. Jahangiri, Harmonic functions starlike in the unit disc, J. Math. Anal. Appl., 235(1999), 470--477.
H. Silverman, Harmonic univalent function with negative coefficients, J. Math. Anal. Appl., 220(1998), 283--289.
H. Silverman and E. M. Silvia, Subclasses of harmonic univalent functions, New Zealand J. Math., 28(1999), 275--284.
M. Ozturk, S. Yalcin and M. Yamankaradeniz, Convex subclass of harmonic starlike functions, Appl. Math. Comput., 154(2004),449--459.
S. Nagpal and V. Ravichandran, A comprehensive class of harmonic functions defined by convolution and its connection with integral transforms and hypergeometric functions, Stud. Univ. Babes-Bolyai Math., 59(2014), 41--55.
A. W. Goodman, On uniformly convex functions, Ann. Polon. Math., 56(1991), 87--92.
F. Ronning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc., 118(1993), 189--196.
Ma. W. C and D. Minda, Uniformly convex functions}, Ann. Polon. Math., 57(1992), 165--175.
F. Ronning, On starlike functions associated with parabolic regions, Ann. Univ. Mariae Curie-Sklodowska Sect. A, 45(1991), 117--122.
S. Kanas and A. Wisniowska, Conic regions and k-uniform convexity, J. Comput. Appl. Math., 105(1999), 327--336.
S. Kanas and H. M. Srivastava, Linear operators associated with k-uniformly convex functions, Integral Transforms Spec. Funct., 9(2000), 121--132.
W. C. Ma nad D. Minda, A unified treatment of some special classes of univalent functions, in: Proceedings of the Conference on Complex Analysis, Tianjin,1992, 157--169, Conf. Proc. Lecture Notes Anal. I, Int. Press, Cambridge, MA, 1994.
Shuhai Li, Huo Tang, Lina Ma and En Ao, A new class of harmonic multivalent meromorphic functions, Bull. Math. Anal. Appl., 7(2015), 20--30.
R. M. El-Ashwah and B. A. Frasin, Hadamard product of certain harmonic univalent meromorphic functions, Theory and Applications of Mathematics Computer Science, 5(2015), 126--131.
H. Silverman, Partial sums of starlike and convex functions, J. Math. Anal. Appl., 209(1997), 221--227.
E. M. Silvia, On partial sums of convex functions of order alpha, Houston J. Math., 11(1985), 397--404.
S. Porwal, Partial sums of certain harmonic univalent function, Lobachevskii J. Math., 32(2011), 366--375.
S. Porwal and K. K. Dixit, Partial sums of starlike harmonic univalent function, Kunpook Math. J., 50(2010), 433--445.
S. Porwal, A convolution approach on partial sums of certain harmonic univalent function}, Internat. J. Math. Math. Sci., 2012, Art. ID 509349, 1--12.