Generalized k–uniformly convex harmonic functions with negative coefficients

Main Article Content

Shuhai Li
Huo Tang
Lina Ma
Ao En

Abstract

In the present paper, we introduce some generalized $k$-uniformly convex harmonic functions with negative coefficients. Sufficient coefficient conditions, distortion bounds, extreme points, Hadamard product and partial sum for functions of these classes are obtained.

Article Details

How to Cite
Li, S., Tang, H., Ma, L., & En, A. (2017). Generalized k–uniformly convex harmonic functions with negative coefficients. Tamkang Journal of Mathematics, 48(2), 185–202. https://doi.org/10.5556/j.tkjm.48.2017.2326
Section
Papers
Author Biographies

Shuhai Li

Professor, School of Mathematics and Statistics, Chifeng University, InnerMongolia 024000, P. R. China.

Huo Tang

Professor, School of Mathematics and Statistics, Chifeng University, InnerMongolia 024000, P. R. China.

Lina Ma

Professor, School of Mathematics and Statistics, Chifeng University, InnerMongolia 024000, P. R. China.

Ao En, Chifeng University

School of Mathematics and Statistics, professor

References

P. L. Duren. Univalent Functions. Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.

J. Clunie and T. Sheil Small. Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A I Math., 39(1984), 3--25.

J. M. Jahangiri, Coefficient bounds and univalent criteria for harmonic functions with negative coefficients, Ann. Univ. Marie-Curie Sklodowska Sect. A, 52(1998), 57--66.

J. M. Jahangiri, Harmonic functions starlike in the unit disc, J. Math. Anal. Appl., 235(1999), 470--477.

H. Silverman, Harmonic univalent function with negative coefficients, J. Math. Anal. Appl., 220(1998), 283--289.

H. Silverman and E. M. Silvia, Subclasses of harmonic univalent functions, New Zealand J. Math., 28(1999), 275--284.

M. Ozturk, S. Yalcin and M. Yamankaradeniz, Convex subclass of harmonic starlike functions, Appl. Math. Comput., 154(2004),449--459.

S. Nagpal and V. Ravichandran, A comprehensive class of harmonic functions defined by convolution and its connection with integral transforms and hypergeometric functions, Stud. Univ. Babes-Bolyai Math., 59(2014), 41--55.

A. W. Goodman, On uniformly convex functions, Ann. Polon. Math., 56(1991), 87--92.

F. Ronning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc., 118(1993), 189--196.

Ma. W. C and D. Minda, Uniformly convex functions}, Ann. Polon. Math., 57(1992), 165--175.

F. Ronning, On starlike functions associated with parabolic regions, Ann. Univ. Mariae Curie-Sklodowska Sect. A, 45(1991), 117--122.

S. Kanas and A. Wisniowska, Conic regions and k-uniform convexity, J. Comput. Appl. Math., 105(1999), 327--336.

S. Kanas and H. M. Srivastava, Linear operators associated with k-uniformly convex functions, Integral Transforms Spec. Funct., 9(2000), 121--132.

W. C. Ma nad D. Minda, A unified treatment of some special classes of univalent functions, in: Proceedings of the Conference on Complex Analysis, Tianjin,1992, 157--169, Conf. Proc. Lecture Notes Anal. I, Int. Press, Cambridge, MA, 1994.

Shuhai Li, Huo Tang, Lina Ma and En Ao, A new class of harmonic multivalent meromorphic functions, Bull. Math. Anal. Appl., 7(2015), 20--30.

R. M. El-Ashwah and B. A. Frasin, Hadamard product of certain harmonic univalent meromorphic functions, Theory and Applications of Mathematics Computer Science, 5(2015), 126--131.

H. Silverman, Partial sums of starlike and convex functions, J. Math. Anal. Appl., 209(1997), 221--227.

E. M. Silvia, On partial sums of convex functions of order alpha, Houston J. Math., 11(1985), 397--404.

S. Porwal, Partial sums of certain harmonic univalent function, Lobachevskii J. Math., 32(2011), 366--375.

S. Porwal and K. K. Dixit, Partial sums of starlike harmonic univalent function, Kunpook Math. J., 50(2010), 433--445.

S. Porwal, A convolution approach on partial sums of certain harmonic univalent function}, Internat. J. Math. Math. Sci., 2012, Art. ID 509349, 1--12.