The optimal dispersal strategy: a two-patch model with travel loss
Main Article Content
Abstract
Article Details
References
M. Astrom, Travel cost and the ideal free distribution, Oikos, 69(1994), 516--519.
D. E. Bowler and T. G. Benten, Causes and consequences of animal dispersal strategies: relating individual behavior to spatial dynamics, Biol. Rev., 80(2005), 205--225.
R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Series in Mathematical and Computational Biology, John Wiley and Sons, Chichester, UK, 2003.
R. S. Cantrell, C. Cosner and Y. Lou,Evolutionary stability of dispersal strategies in patchy environments, J. Math. Biology, 65(2012) 943--965.
R. S. Cantrell, C. Cosner, D.L. DeAngelis and V. Padron, The ideal free distribution as an evolutionarily stable strategy, J. Biol. Dyn., 1(2007),249--271.
R. S. Cantrell, C. Cosner and Y. Lou, Evolution of dispersal in heterogeneous landscape}, Spatial Ecology, Mathematical and Computational Biology Series, Chapman Hall/CRC Press, Edited by R.S. Cantrell, C. Cosner and S. Ruan, 2009, 213--229.
E. L. Charnov, Optimal foraging, the marginal value theorem, Theoretical Population Biology, 9(1976), 129--136.
J. Clobert, E. Danchin, A. Dhondt and J. Nichols eds., Dispersal}, Oxford University Press, Oxford, 2001.
D. DeAngelis, G. S. K. Wolkowicz, Y. Lou, Y. X. Jiang, M. Novak, R. Svanback, M. Araujo, Y. S. Jo and E. A. Cleary, The effect of travel loss on evolutionarily stable
distributions of populations in space, Am. Nat., 178(2011), 15--29.
U. Dieckmann, Can adaptive dynamics invade? Trends in Ecology and Evolution, 12(1997), 128--131.
U. Dieckmann and R. Law, The dynamical theory of coevolution: A derivation from stochastic ecological processes, J. Math. Biol., 34(1996), 579--612.
O. Diekmann, A beginner's guide to adaptive dynamics, Banach Center Publ., 63(2003), 47--86.
J. Dockery, V. Hutson, K. Mischaikow and M. Pernarowski, The evolution of slow dispersal rates: A reaction-diffusion model, J. Math. Biol., 37(1998), 61--83.
C.P. Doncaster, J. Clobert, B. Doligez, L. Gustafsson and E. Danchin, Balanced dispersal between spatially varying local populations: an alternative to the source-sink model}, Am. Nat., 150(1997), 425--445.
S. Fretwell and H. Lucas Jr., On territorial behavior and other factors influencing habitat selection in birds: Theoretical development, Acta Biotheoretica, 19(1970), 16--36.
S.A.H. Geritz and M. Gyllenberg, The mathematical theory of adaptive dynamics. Cambridge University Press, Cambridge 2008.
S. A. H. Geritz, E. Kisdi, G. Meszena and J. A. J. Metz, Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree, Evol. Ecol., 12(1998), 35--57.
M. Gibbs, M. Saastamoinen, A. Coulon and V. Stevens, Organisms on the move: ecology and evolution of dispersal, Biology Letters, 6(2010), 146--148.
B. S. Goh, Global stability in many-species systems, Am. Nat., 111(1977), 135--143.
A. Hastings, Can spatial variation alone lead to selection for dispersal? Theor. Pop. Biol., 24(1983), 244--251.
V. Hutson, K. Mischaikow and P. Polacik, The evolution of dispersal rates in a heterogeneous time-periodic environment, J. Math. Biol., 43 (2001),501--533.
M. Kennedy and R. D. Gray, Habitat choice, habitat matching, and the effect of travel distance, Behavior, 134(1997), 905--920.
S. Kirkland, C.-K. Li and S.J. Schreiber, On the evolution of dispersal in patchy environments, SIAM J. Appl. Math., 66(2006), 1366--1382.
R. Korona, Travel costs and the ideal free distribution of ovipositing female flour beetles, Tribolium confusum, Animal Behavior, 40(1990), 186--187.
Some extension of Lyapunov's second method, IRE Trans. Circuit Theory, CT-7(1960), 520--527.
S.A. Levin, H.C. Muller-Landau, R. Nathan and J. Chave, The ecology and evolution of seed dispersal: A theoretical perspective, Annu. Rev. Eco. Evol.
Syst., 34(2003), 575--604.
Y. Lou, Some challenging mathematical problems in evolution of dispersal and population dynamics, 171-205. In: Friedman, A. (Ed.), Tutor. Math. Biosci. vol IV: Evolution and Ecology, Lect. Notes Mathematics Vol. 1922, Springer, 2007.
Y. Lou and C.-H. Wu, Global dynamics of a tri-trophic model for two patches with cost of dispersal, SIAM Journal on Applied Mathematics, 71(2011), 1801--1820.
Z. Lu and G.S.K. Wolkowicz, Global dynamics of a mathematical model of competition in the chemostat: general response functions and different death rates, SIAM J. Appl. Math., 52(1992),222--233.
S. Matsumura, R. Arlinghaus and U. Dieckmann, Foraging on spatially distributed resources with sub-optimal movement, imperfect information, and travelling costs: departures from the idea free distribution, Oikos, 119(2010),1469--1483.
M. A. McPeek and R. D. Holt, The evolution of dispersal in spatially and temporally varying environments, Am. Nat., 140(1992), 1010--1027.
M. Milinski, An evolutionarily stable feeding strategy in sticklebacks, Zeitschrift fur Tierpsychologie, 51(1979), 36--40.
D.W. Morris, Spatial scale and the cost of density-dependent habitat selection, Evolutionary Ecology, 1(1987), 379--388.
W.-M. Ni,The Mathematics of Diffusion, CBMS-NSF Regional Conf. Ser. in Appl. Math. 82, SIAM,Philadelphia, 2011.
K. Regelmann, Competitive resource sharing: a simulation model. Animal Behavior, 32(1984), 226--232.
T. Tregenza, Building on the ideal free distribution: models and tests. Advances in Ecological Research, 26(1995), 253--302.
J. M. Yoder, E. A. Marschall and D. A. Swanson, The cost of dispersal: predation as a function of movement and site familiarity in ruffed grouse, Behavioral Ecology, 15(2004), 469--476.