On endo curvature tensor of a contact metric manifold
Main Article Content
Abstract
We prove that a $ ( k ,\mu ) $-manifold with vanishing Endo curvature tensor is a Sasakian manifold. We find a necessary and sufficient condition for a non-Sasakian $ ( k ,\mu ) $-manifold %$M$ whose Endo curvature tensor $ B^{es} $ satisfies $ B^{es}(\xi ,X) \cdot S=0 $, where $S$ is the Ricci tensor. Using $ {\cal D} $-homothetic deformation we obtain an example of an $ N\left( k\right) $-contact metric manifold on which $ B^{es}(\xi ,X)\cdot S\neq 0 $.
Article Details
How to Cite
Dwivedi, M. K., Jun, J.-B., & Tripathi, M. M. (2008). On endo curvature tensor of a contact metric manifold. Tamkang Journal of Mathematics, 39(2), 177–186. https://doi.org/10.5556/j.tkjm.39.2008.28
Issue
Section
Papers