Controllability and observability of linear impulsive adjoint dynamic system on time scale

Authors

  • Nusrat Yasmin Centre for Advanced Studies in Pure and Applied Mathematics, Bahauddin Zakariya University, Multan
  • Safia Mirza Centre for Advanced Studies in Pure and Applied Mathematics, Bahauddin Zakariya University, Multan
  • Awais Younus Centre for Advanced Studies in Pure and Applied Mathematics, Bahauddin Zakariya University, Multan
  • Asif Mansoor Bahria University, Karachi Campus, Karachi

DOI:

https://doi.org/10.5556/j.tkjm.51.2020.2951

Keywords:

Time scale, Controllability, Observability, Gramain Matrix

Abstract

This paper deals with the controllability, observability of the solution of time-varying system on time scales. We obtain new results about controllability and observability and generalize to a time scale some known properties about stability from the continuous case.

Author Biographies

Nusrat Yasmin, Centre for Advanced Studies in Pure and Applied Mathematics, Bahauddin Zakariya University, Multan

Professor of Mathematics

Department of Mathematics, Bahauddin Zakariya University, Multan

Safia Mirza, Centre for Advanced Studies in Pure and Applied Mathematics, Bahauddin Zakariya University, Multan

Senior Lecturer

Department of Mathematics, Bahauddin Zakariya University, Multan 

Awais Younus, Centre for Advanced Studies in Pure and Applied Mathematics, Bahauddin Zakariya University, Multan

Associate Professor

Department of Mathematics, Bahauddin Zakariya University, Multan 

Asif Mansoor, Bahria University, Karachi Campus, Karachi

Associate Professor of Computional Mathematics

Department of Humanities & social Sciences, Faculty of Science, Bahria University, Karachi Campus, Karachi 

 

References

M. Adivar, A new periodicity concept for time scales, Math. Slovaca, 63(4) (2013) 817-828.

M. Adviar, Principal matrix solutions and variations of parameters forVolterra integro-dynamic equations on time scales, Glasg. Math. J. 53-3 (2011) 1-18.

R. P. Agarwal, M. Bohner, D. ORegan, A. Peterson, Dynamic equations on time Scales: A Survey, J. Comput, Appl. Math. 141 (2002) 1-26.

D. D. Bainov, P. S. Simeonov, Stability Theory of Di⁄erential Equations with Impulsive E⁄ect: Theory and Applications. Chichester, U.K. Ellis Horwood, 1989.

M. Bohner , A. Peterson, Advanced in Dynamic Equations on time Scale, Birkhauser, Boston, 2003.

M. Bohner , A. Peterson, Dynamic Equations on time Scale, An introduction with Applications. Birkhauser, Boston, 2001.

D. Chen, J. Sun, Q. Wu, Impulsive control and its application to Lus chaotic system, Chaos, Solution, Fractals, vol. 21 (2004) 1135-1142.

J. J. DaCunha, Instsbility results for slowly time varying linear dynamic systems on time scales, J. Math. Anal. Appl., 328 (2007) 1278-1289.

F. Genga, Y. Xu, D. Zhu, Periodic boundary value problems for first order impulsive dynamic equations on time scales, Nonlinear Analysis 69 (2008) 4074-4087.

Z. H. Guan, T. H. Qian, X. Yu, On controllability and observability for a class of impulsive systems, Systems & Control Letters 47 (2002) 247-257.

S. Hilger, Analysis on measure chain-a uni ed approach to continuous and discrete calculus, Result Math. 18 (1990) 18-56.

J. Ho⁄acker, C. C. Tisdell, Stability and instability for dynamic equations on time scales, Comput. Math. Appl. 49 (2005) 1327-1334.

B. Kaymakealan, R. Mert, A. Zafer, Asymptotic equivalance of dynamic system on time scale,Discrete and continuous dynamical systems Supplement (2007) 558-567.

S. Leela, F. A. McRae, S. Sivasundaram, Controllability of impulsive differential equations, J. Math. Anal. Appl.177 (1993) 24-30.

Z. G. Li, Y. C. B. Soh, X. H. Xu, Lyapunov stability for a class of hybrid dynamic systems, Automatica, vol. 36 (2000) 297-302. tems, IEEE Trans. Autom. Control, vol. 46, no. 6 (2001) 894-897.

Z. G. Li, C. Y. Wen, Y. C. Soh, Analysis and design of impulsive control systems, IEEE Trans. Autom. Control, vol. 46, no. 6 (2001) 894-897.

H. Liu, X. Xiang, A class of the rst order impulsive dynamic equation on time scales, Nonlinear Analysis 69 (2008) 2803-2811.

V. Lupulescu, A. Zada, Linear impulsive dynamical systems on time scales, Electronic J. Qual. theory Di⁄er. Equ. (11) (2010) 1-30.

V. Lupulescu, A. Younus, On controllability and observability for a class of linear impusive dynamic system on time scales, Math. Comput. Modelling, 54 (2011) 1300-1310.

V. Lupulescu, A. Younus, controllability and observability for a class of time-varying impusive system on time scales, Electron. J. Qual. Theory Differ. Equ. 95 (2011) 1-30.

S. Sivasundaram, Stability of dynamic systems on time scales. Nonlinear Dyn. Syst. Theory 2 (2002)185-202.

A. Slavik, Product integration on time Scales, Dynam. System Appl. 19 (2010) 97-112.

A. Slavik, Dynamic equation on time scales and generalized ordinary differential equations, J. Math. Anal. Appl. 385 (2012) 534-550.

G. M. Xie, L. Wang, Controllability and observability of a class of linear impulsive systems, J. Math. Anal. Appl. 304 (2005) 336-355.

T. Yang, Impulsive Control Theory, Springer-Verlag Berlin Heidelberg, 2001.

H. Ye, A. N. Michel, L. Hou, Stability theory for hybrid dynamical systems, IEEE Trans. Autom. Control, vol. 43, no. 4 (1998) 461-47

Downloads

Published

2020-07-30

How to Cite

Yasmin, N., Mirza, S., Younus, A., & Mansoor, A. (2020). Controllability and observability of linear impulsive adjoint dynamic system on time scale. Tamkang Journal of Mathematics, 51(3), 201-217. https://doi.org/10.5556/j.tkjm.51.2020.2951

Issue

Section

Papers