Controllability and observability of linear impulsive adjoint dynamic system on time scale
Main Article Content
Abstract
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
M. Adivar, A new periodicity concept for time scales, Math. Slovaca, 63(4) (2013) 817-828.
M. Adviar, Principal matrix solutions and variations of parameters forVolterra integro-dynamic equations on time scales, Glasg. Math. J. 53-3 (2011) 1-18.
R. P. Agarwal, M. Bohner, D. ORegan, A. Peterson, Dynamic equations on time Scales: A Survey, J. Comput, Appl. Math. 141 (2002) 1-26.
D. D. Bainov, P. S. Simeonov, Stability Theory of Di⁄erential Equations with Impulsive E⁄ect: Theory and Applications. Chichester, U.K. Ellis Horwood, 1989.
M. Bohner , A. Peterson, Advanced in Dynamic Equations on time Scale, Birkhauser, Boston, 2003.
M. Bohner , A. Peterson, Dynamic Equations on time Scale, An introduction with Applications. Birkhauser, Boston, 2001.
D. Chen, J. Sun, Q. Wu, Impulsive control and its application to Lus chaotic system, Chaos, Solution, Fractals, vol. 21 (2004) 1135-1142.
J. J. DaCunha, Instsbility results for slowly time varying linear dynamic systems on time scales, J. Math. Anal. Appl., 328 (2007) 1278-1289.
F. Genga, Y. Xu, D. Zhu, Periodic boundary value problems for first order impulsive dynamic equations on time scales, Nonlinear Analysis 69 (2008) 4074-4087.
Z. H. Guan, T. H. Qian, X. Yu, On controllability and observability for a class of impulsive systems, Systems & Control Letters 47 (2002) 247-257.
S. Hilger, Analysis on measure chain-a uni ed approach to continuous and discrete calculus, Result Math. 18 (1990) 18-56.
J. Ho⁄acker, C. C. Tisdell, Stability and instability for dynamic equations on time scales, Comput. Math. Appl. 49 (2005) 1327-1334.
B. Kaymakealan, R. Mert, A. Zafer, Asymptotic equivalance of dynamic system on time scale,Discrete and continuous dynamical systems Supplement (2007) 558-567.
S. Leela, F. A. McRae, S. Sivasundaram, Controllability of impulsive differential equations, J. Math. Anal. Appl.177 (1993) 24-30.
Z. G. Li, Y. C. B. Soh, X. H. Xu, Lyapunov stability for a class of hybrid dynamic systems, Automatica, vol. 36 (2000) 297-302. tems, IEEE Trans. Autom. Control, vol. 46, no. 6 (2001) 894-897.
Z. G. Li, C. Y. Wen, Y. C. Soh, Analysis and design of impulsive control systems, IEEE Trans. Autom. Control, vol. 46, no. 6 (2001) 894-897.
H. Liu, X. Xiang, A class of the rst order impulsive dynamic equation on time scales, Nonlinear Analysis 69 (2008) 2803-2811.
V. Lupulescu, A. Zada, Linear impulsive dynamical systems on time scales, Electronic J. Qual. theory Di⁄er. Equ. (11) (2010) 1-30.
V. Lupulescu, A. Younus, On controllability and observability for a class of linear impusive dynamic system on time scales, Math. Comput. Modelling, 54 (2011) 1300-1310.
V. Lupulescu, A. Younus, controllability and observability for a class of time-varying impusive system on time scales, Electron. J. Qual. Theory Differ. Equ. 95 (2011) 1-30.
S. Sivasundaram, Stability of dynamic systems on time scales. Nonlinear Dyn. Syst. Theory 2 (2002)185-202.
A. Slavik, Product integration on time Scales, Dynam. System Appl. 19 (2010) 97-112.
A. Slavik, Dynamic equation on time scales and generalized ordinary differential equations, J. Math. Anal. Appl. 385 (2012) 534-550.
G. M. Xie, L. Wang, Controllability and observability of a class of linear impulsive systems, J. Math. Anal. Appl. 304 (2005) 336-355.
T. Yang, Impulsive Control Theory, Springer-Verlag Berlin Heidelberg, 2001.
H. Ye, A. N. Michel, L. Hou, Stability theory for hybrid dynamical systems, IEEE Trans. Autom. Control, vol. 43, no. 4 (1998) 461-47