Rotation Minimizing Frames and Spherical Curves in Simply Isotropic and Pseudo-Isotropic 3-Spaces
Main Article Content
Abstract
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
M. E. Aydin, A generalization of translation surfaces with constant curvature in the isotropic space, J. Geom. 107 (2015), 603–615.
M. E. Aydin, Constant curvature surfaces in a pseudo-isotropic space, Tamkang J. Math. 49 (2018), 221–233.
M. E. Aydin and M. Ergut, Isotropic geometry of graph surfaces associated with product production functions in economics, Tamkang J. Math. 47 (2016), 433–443.
G. Birkhoff and M. K. Bennett, Felix Klein and his “Erlanger Programm”, History and philosophy of modern mathematics 11 (1988), 145–176.
G. S. Birman and K. Nomizu, Trigonometry in Lorentzian geometry, Am. Math. Mon. 91 (1984), 543–549.
R. L. Bishop, There is more than one way to frame a curve, Am. Math. Mon. 82 (1975), 246–251.
H. Brauner, Geometrie des zweifach isotropen Raumes. II. Differentialgeometrie der Kurven und windschiefen Fla ̈chen, J. Reine Angew. Math. 226 (1967), 132–158.
B.-Y. Chen, S. Decu, and L. Verstraelen, Notes on isotropic geometry of production models, Kragujevac J. Math. 7 (2014), 217–220.
L. C. B. Da Silva, Moving frames and the characterization of curves that lie on a surface, J. Geom. 108 (2017), 1091–1113.
L. C. B. Da Silva and J. D. Da Silva, Characterization of curves that lie on a geodesic sphere or on a totally geodesic hypersurface in a hyperbolic space or in a sphere, Meditter. J. Math. 15 (2018), 70.
F. Etayo, Rotation minimizing vector fields and frames in Riemannian manifolds, In: M. Cas- trill ́on L ́opez, L. Hern ́andez Encinas, P. Mart ́ınez Gadea, M.E. Rosado Mar ́ıa (eds.) Geometry, Algebra and Applications: From Mechanics to Cryptography, Springer Proceedings in Mathematics and Statistics, vol. 161, pp. 91–100. Springer, 2016.
O. Giering, , Vorlesungen u ̈ber h ̈ohere Geometrie, Vieweg, Wiesbaden, 1982.
M. K. Karacan, D. W. Yoon, and S. Kiziltung, Helicoidal surfaces in the three dimensional simply isotropic space I13, Tamkang J. Math. 48 (2017), 123–134.
F. Klein, Vergleichende Betrachtungen u ̈ber neuere geometrische Forschungen, Math. Ann. 43 (1893), 63–100.
J. Koenderink and A. van Doorn, Image processing done right, Computer Vision – ECCV 2002 pp. 158–172, 2002.
E. Kreyszig, Differential Geometry, Dover, New York, 1991.
W. Ku ̈hnel, Differentialgeometrie: Kurven - Fla ̈chen - Mannigfaltigkeiten 5. Auflage, Vieweg+Teubner, 2010.
R. L ́opez, Differential geometry of curves and surfaces in Lorentz-Minkowski space, Int. Electron. J. Geom. 7 (2015), 44–107.
A. L. Onishchik and R. Sulanke, Projective and Cayley-Klein geometries,
Springer, 2006.
M. Ozdemir and A. A. Ergin, Parallel frames of non-lightlike curves, Missouri J. Math. Sci. 20 (2008), 127–137.
H. Pottmann, P. Grohs, and N. J. Mitra, Laguerre minimal surfaces, isotropic geometry and linear elasticity, Adv. Comput. Math. 31 (2009), 391–419.
H. Pottmann and K. Opitz, Curvature analysis and visualization for functions defined on Euclidean spaces or surfaces, Comput. Aided Geom. Des. 11 (1994), 655–674.
H. Sachs, Ebene Isotrope Geometrie, Vieweg, Braunschweig/Wiesbaden, 1987.
H. Sachs, Isotrope Geometrie des Raumes, Vieweg, Braunschweig/Wiesbaden, 1990.
A. Saloom and F. Tari, Curves in the Minkowski plane and their contact with pseudo-circles, Geom. Dedicata 159 (2012), 109–124.
Z. M. Sipuˇs and B. Divjak, Curves in n-dimensional k-isotropic space, Glasnik Matematicki 33 (1998), 267–286.
K. Strubecker, Beitra ̈ge zur Geometrie des isotropen Raumes, J. Reine Angew. Math. 178 (1938), 135–173.
K. Strubecker, Differentialgeometrie des isotropen Raumes, I. Theorie der Raumkurven, Sitzber. Ost. Akad. 150 (1941), 1–53.
H. Struve and R. Struve, Non-euclidean geometries: the Cayley-Klein approach, J. Geom. 98 (2010), 151–170.
H. Vogler and H. Wresnik, Endlichdimensionale isotrope Ra ̈ume Ink vom Isotropiegrad k, Grazer Math. Ber. 307 (1989), 1–46.
I. M. Yaglom, A simple non-Euclidean geometry and its physical basis, Springer, 1979.
D. W. Yoon, Loxodromes and geodesics on rotational surfaces in a simply isotropic space, J. Geom. 108 (2017), 429–435.