Rotation Minimizing Frames and Spherical Curves in Simply Isotropic and Pseudo-Isotropic 3-Spaces

Main Article Content

Luiz C. B. da Silva

Abstract

In this work, we are interested in the differential geometry of curves in the simply isotropic and pseudo-isotropic 3-spaces, which are examples of Cayley-Klein geometries whose absolute figure is given by a plane at infinity and a degenerate quadric. Motivated by the success of rotation minimizing (RM) frames in Euclidean and Lorentzian geometries, here we show how to build RM frames in isotropic geometries and apply them in the study of isotropic spherical curves. Indeed, through a convenient manipulation of osculating spheres described in terms of RM frames, we show that it is possible to characterize spherical curves via a linear equation involving the curvatures that dictate the RM frame motion. For the case of pseudo-isotropic space, we also discuss on the distinct choices for the absolute figure in the framework of a Cayley-Klein geometry and prove that they are all equivalent approaches through the use of Lorentz numbers (a complex-like system where the square of the imaginary unit is $+1$). Finally, we also show the possibility of obtaining an isotropic RM frame by rotation of the Frenet frame through the use of Galilean trigonometric functions and dual numbers (a complex-like system where the square of the imaginary unit vanishes).

Article Details

How to Cite
da Silva, L. C. B. (2020). Rotation Minimizing Frames and Spherical Curves in Simply Isotropic and Pseudo-Isotropic 3-Spaces. Tamkang Journal of Mathematics, 51(1), 31–52. https://doi.org/10.5556/j.tkjm.51.2020.2960
Section
Papers

References

M. E. Aydin, A generalization of translation surfaces with constant curvature in the isotropic space, J. Geom. 107 (2015), 603–615.

M. E. Aydin, Constant curvature surfaces in a pseudo-isotropic space, Tamkang J. Math. 49 (2018), 221–233.

M. E. Aydin and M. Ergut, Isotropic geometry of graph surfaces associated with product production functions in economics, Tamkang J. Math. 47 (2016), 433–443.

G. Birkhoff and M. K. Bennett, Felix Klein and his “Erlanger Programm”, History and philosophy of modern mathematics 11 (1988), 145–176.

G. S. Birman and K. Nomizu, Trigonometry in Lorentzian geometry, Am. Math. Mon. 91 (1984), 543–549.

R. L. Bishop, There is more than one way to frame a curve, Am. Math. Mon. 82 (1975), 246–251.

H. Brauner, Geometrie des zweifach isotropen Raumes. II. Differentialgeometrie der Kurven und windschiefen Fla ̈chen, J. Reine Angew. Math. 226 (1967), 132–158.

B.-Y. Chen, S. Decu, and L. Verstraelen, Notes on isotropic geometry of production models, Kragujevac J. Math. 7 (2014), 217–220.

L. C. B. Da Silva, Moving frames and the characterization of curves that lie on a surface, J. Geom. 108 (2017), 1091–1113.

L. C. B. Da Silva and J. D. Da Silva, Characterization of curves that lie on a geodesic sphere or on a totally geodesic hypersurface in a hyperbolic space or in a sphere, Meditter. J. Math. 15 (2018), 70.

F. Etayo, Rotation minimizing vector fields and frames in Riemannian manifolds, In: M. Cas- trill ́on L ́opez, L. Hern ́andez Encinas, P. Mart ́ınez Gadea, M.E. Rosado Mar ́ıa (eds.) Geometry, Algebra and Applications: From Mechanics to Cryptography, Springer Proceedings in Mathematics and Statistics, vol. 161, pp. 91–100. Springer, 2016.

O. Giering, , Vorlesungen u ̈ber h ̈ohere Geometrie, Vieweg, Wiesbaden, 1982.

M. K. Karacan, D. W. Yoon, and S. Kiziltung, Helicoidal surfaces in the three dimensional simply isotropic space I13, Tamkang J. Math. 48 (2017), 123–134.

F. Klein, Vergleichende Betrachtungen u ̈ber neuere geometrische Forschungen, Math. Ann. 43 (1893), 63–100.

J. Koenderink and A. van Doorn, Image processing done right, Computer Vision – ECCV 2002 pp. 158–172, 2002.

E. Kreyszig, Differential Geometry, Dover, New York, 1991.

W. Ku ̈hnel, Differentialgeometrie: Kurven - Fla ̈chen - Mannigfaltigkeiten 5. Auflage, Vieweg+Teubner, 2010.

R. L ́opez, Differential geometry of curves and surfaces in Lorentz-Minkowski space, Int. Electron. J. Geom. 7 (2015), 44–107.

A. L. Onishchik and R. Sulanke, Projective and Cayley-Klein geometries,

Springer, 2006.

M. Ozdemir and A. A. Ergin, Parallel frames of non-lightlike curves, Missouri J. Math. Sci. 20 (2008), 127–137.

H. Pottmann, P. Grohs, and N. J. Mitra, Laguerre minimal surfaces, isotropic geometry and linear elasticity, Adv. Comput. Math. 31 (2009), 391–419.

H. Pottmann and K. Opitz, Curvature analysis and visualization for functions defined on Euclidean spaces or surfaces, Comput. Aided Geom. Des. 11 (1994), 655–674.

H. Sachs, Ebene Isotrope Geometrie, Vieweg, Braunschweig/Wiesbaden, 1987.

H. Sachs, Isotrope Geometrie des Raumes, Vieweg, Braunschweig/Wiesbaden, 1990.

A. Saloom and F. Tari, Curves in the Minkowski plane and their contact with pseudo-circles, Geom. Dedicata 159 (2012), 109–124.

Z. M. Sipuˇs and B. Divjak, Curves in n-dimensional k-isotropic space, Glasnik Matematicki 33 (1998), 267–286.

K. Strubecker, Beitra ̈ge zur Geometrie des isotropen Raumes, J. Reine Angew. Math. 178 (1938), 135–173.

K. Strubecker, Differentialgeometrie des isotropen Raumes, I. Theorie der Raumkurven, Sitzber. Ost. Akad. 150 (1941), 1–53.

H. Struve and R. Struve, Non-euclidean geometries: the Cayley-Klein approach, J. Geom. 98 (2010), 151–170.

H. Vogler and H. Wresnik, Endlichdimensionale isotrope Ra ̈ume Ink vom Isotropiegrad k, Grazer Math. Ber. 307 (1989), 1–46.

I. M. Yaglom, A simple non-Euclidean geometry and its physical basis, Springer, 1979.

D. W. Yoon, Loxodromes and geodesics on rotational surfaces in a simply isotropic space, J. Geom. 108 (2017), 429–435.