Annihilator-semigroup rings

Authors

  • D. D. Anderson
  • Victor Camillo

DOI:

https://doi.org/10.5556/j.tkjm.34.2003.313

Abstract

Let $ R $ be a commutative ring with 1. We define $ R $ to be an annihilator-semigroup ring if $ R $ has an annihilator-Semigroup $ S $, that is, $ (S, \cdot) $ is a multiplicative subsemigroup of $ (R, \cdot) $ with the property that for each $ r \in R $ there exists a unique $ s \in S $ with $ 0 : r = 0 : s $. In this paper we investigate annihilator-semigroups and annihilator-semigroup rings.

Author Biographies

D. D. Anderson

Department of Mathematics, The University of Iowa, Iowa City IA 52242, U.S.A.

Victor Camillo

Department of Mathematics, The University of Iowa, Iowa City IA 52242, U.S.A.

Published

2003-09-30

How to Cite

Anderson, D. D., & Camillo, V. (2003). Annihilator-semigroup rings. Tamkang Journal of Mathematics, 34(3), 223-229. https://doi.org/10.5556/j.tkjm.34.2003.313

Issue

Section

Papers

Most read articles by the same author(s)