Annihilator-semigroup rings

Main Article Content

D. D. Anderson
Victor Camillo

Abstract

Let $ R $ be a commutative ring with 1. We define $ R $ to be an annihilator-semigroup ring if $ R $ has an annihilator-Semigroup $ S $, that is, $ (S, \cdot) $ is a multiplicative subsemigroup of $ (R, \cdot) $ with the property that for each $ r \in R $ there exists a unique $ s \in S $ with $ 0 : r = 0 : s $. In this paper we investigate annihilator-semigroups and annihilator-semigroup rings.

Article Details

How to Cite
Anderson, D. D., & Camillo, V. (2003). Annihilator-semigroup rings. Tamkang Journal of Mathematics, 34(3), 223–229. https://doi.org/10.5556/j.tkjm.34.2003.313
Section
Papers
Author Biographies

D. D. Anderson

Department of Mathematics, The University of Iowa, Iowa City IA 52242, U.S.A.

Victor Camillo

Department of Mathematics, The University of Iowa, Iowa City IA 52242, U.S.A.

Most read articles by the same author(s)