Annihilator-semigroup rings
Main Article Content
Abstract
Let $ R $ be a commutative ring with 1. We define $ R $ to be an annihilator-semigroup ring if $ R $ has an annihilator-Semigroup $ S $, that is, $ (S, \cdot) $ is a multiplicative subsemigroup of $ (R, \cdot) $ with the property that for each $ r \in R $ there exists a unique $ s \in S $ with $ 0 : r = 0 : s $. In this paper we investigate annihilator-semigroups and annihilator-semigroup rings.
Article Details
How to Cite
Anderson, D. D., & Camillo, V. (2003). Annihilator-semigroup rings. Tamkang Journal of Mathematics, 34(3), 223–229. https://doi.org/10.5556/j.tkjm.34.2003.313
Issue
Section
Papers