Consonancy of dynamic inequalities correlated on time scale calculus

Main Article Content

Muhammad Jibril Shahab Sahir

Abstract

In this paper, discrete and continuous versions of some inequalities
such as Radon's Inequality, Bergstrom's Inequality, Nesbitt's Inequality,
Rogers-Holder's Inequality and Schlomilch's Inequality are unified on dynamic
time scale calculus in extended form.

Article Details

How to Cite
Sahir, M. J. S. (2020). Consonancy of dynamic inequalities correlated on time scale calculus. Tamkang Journal of Mathematics, 51(3), 233–243. https://doi.org/10.5556/j.tkjm.51.2020.3145
Section
Papers
Author Biography

Muhammad Jibril Shahab Sahir, University of Sargodha, Sub-Campus Bhakkar, Pakistan

Mathematics, Subject Spechialist

References

R.P. Agarwal, D. O'Regan and S.H. Saker, Dynamic inequalities on time scales, Springer

International Publishing, Cham, Switzerland, (2014).

D. Anderson, J. Bullock, L. Erbe, A. Peterson and H. Tran, Nabla dynamic equations on

time scales, Pan-American Mathematical Journal, 13(1), 1-48, (2003).

E.F. Beckenbach and R. Bellman, Inequalities, Springer, Berlin, Gottingen and Heidelberg,

(1961).

R. Bellman, Notes on matrix theory-IV (An inequality due to Bergstrom), Amer. Math.

Monthly, 62, 172-173, (1955).[5] H. Bergstrom, A triangle inequality for matrices, Den Elfte Skandinaviske Matematikerkongress,

(1949), Trodheim, Johan Grundt Tanums Forlag, Oslo, 264-267, (1952).

M. Bohner and A. Peterson, Dynamic equations on time scales, Birkhauser Boston Inc.,

Boston, MA, (2001).

M. Bohner and A. Peterson, Advances in dynamic equations on time scales, Birkhauser

Boston, Boston, MA, (2003).

D.M.B. Giurgiu, D. Marghidanu and O.T. Pop, A new generalization of Radon's Inequality

and applications, Creative Math & Inf, 20(2), 111-116, (2011).

D.M.B. Giurgiu and N. Stanciu, One inequality and some applications, Journal of Science

and Arts, 2(23), 131-134, (2013).

G.H. Hardy, J.E. Littlewood and G. Polya, Inequalities, 2nd ed, Cambridge, University Press,

(1952).

S. Hilger, Ein Makettenkalkul mit Anwendung auf Zentrumsmannigfaltigkeiten, PhD thesis,

Universitat Wurzburg, (1988).

D.S. Mitrinovic, Analytic inequalities, Springer-Verlag, Berlin, (1970).

A. M. Nesbitt, Problem 15114, Educational Times, 3, 37-38, (1903).

U.M. Ozkan, M.Z. Sarikaya and H. Yildirim, Extensions of certain integral inequalities on

time scales, Applied Mathematics Letters, 993-1000, 21, (2008).

J. Radon, Theorie und Anwendungen der absolut additiven Mengenfunktionen, Sitzungsber.

Acad. Wissen. Wien, 122, 1295-1438, (1913).

M.J.S. Sahir, Dynamic inequalities for convex functions harmonized on time scales, Journal

of Applied Mathematics and Pysics, 5, 2360-2370, (2017).

M.J.S. Sahir, Formation of versions of some dynamic inequalities unied on time scale calculus,

Ural Mathematical Journal, 4(2), 88-98, (2018).

Q. Sheng, M. Fadag, J. Henderson and J.M. Davis, An exploration of combined dynamic

derivatives on time scales and their applications, Nonlinear Anal. Real World Appl. 7, 395-

, (2006).