Pointwise (H, Φ) Strong Approximation by Fourier Series of LΨ Integrable Functions

Main Article Content

Włodzimierz Łenski

Abstract




We essentially extend and improve the classical result of G. H. Hardy and J. E. Littlewood on strong summability of Fourier series. We will present an estimation of the generalized strong mean (H, Φ) as an approximation version of the Totik type generaliza- tion of the result of G. H. Hardy, J. E. Littlewood, in case of integrable functions from LΨ. As a measure of such approximation we will use the function constructed by function Ψ com- plementary to Φ on the base of definition of the LΨ points. Some corollary and remarks will also be given.




Article Details

How to Cite
Łenski, W. (2021). Pointwise (H, Φ) Strong Approximation by Fourier Series of LΨ Integrable Functions. Tamkang Journal of Mathematics, 53(1), 1–9. https://doi.org/10.5556/j.tkjm.53.2022.3219
Section
Papers

References

O. D. Gabisoniya, On the points of strong summability of Fourier series, Mat. Zam. 14, No 5, 615-626, (1973)( in Russian)

O. D. Gabisoniya, Points of strong summability of Fourier series, Ukrainskii Matematicheskii Zhurnal, Vol. 44, No. 8, pp. 1020-1031, (1992) ( in Russian)

L. D. Gogoladze, On strong summability almost everywhere, Mat. Sb. (N.S.), 135(177):2, 158–168, (1988) ( in Russian)

G. H. Hardy and J. E. Littlewood, Sur la série de Fourier d’une function a caré sommable, Comptes Rendus, Vol.28, 1307-1309 (1913)

G. H. Hardy and J. E. Littlewood, On strong summability of Fourier series, Proc. London Math. Soc. 273-286, (1926)

G. H. Hardy and J. E. Littlewood, The strong summability of Fourier series, Fund. Math. 25, 162-189, (1935)

M. A Krasnoselskii and Ya. B. Rutickii, Convex Functions and Orlicz Spaces, Noordhoff, Groningen, (1961)

W. Łenski, On the strong approximation by (C,α)-means of Fourier series, Math Nachrichten 146, 207-220, (1990)

W. Łenski, Pointwise strong and very strong approximation of Fourier series, Acta Math. Hungar. 115, no.3, 215-233, (2007)

W. Łenski, Pointwise (H, Φ) strong approximation by Fourier series of L1 integrable func- tions, Results Math 73:132, (2018)

J. Marcinkiewicz, Sur la sommabilite forte de series de Fourier, J. London Math. Soc. 14, 162-168, (1939)

I. Ya. Novikov and W. A. Rodin, Characterization of points p-strong summability of trigonometrics series, p ≥ 2, Izv. Vyssh. Uchebn. Zaved. Mat., no. 9, 58–62, (1988)

W. A. Rodin, BMO-strong means of Fourier series, Funct. Anal. Appl., 23:2, 145–147,(1989)

V. Totik, On Generalization of Fejér summation theorem, Coll. Math. Soc. J. Bolyai35 Functions series, operators, Budapest (Hungary), 1185-1199, (1980)

V. Totik, Notes on Fourier series: Strong approximation, J. Approx. Th. 43, 105-111, (1985)

A. Zygmund, On the convergence and summability of power series on the circle of conver- gence, P.L.M.S. 47, 326-50, (1941)

A. Zygmund,Trigonometric series, Cambride, (1959)

Fu Traing Wang, Strong summability of Fourier series, Duke Math. J. 12, 77-87,(1945)