Treatment of Singularly Perturbed Differential Equations with Delay and Shift Using Haar Wavelet Collocation Method
Main Article Content
Abstract
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
K. Ahmad and F. A. Shah, Introduction to Wavelets with Applications, Real World Education Publishers, New Delhi (2013).
T. Aziz and A. Khan, A spline method for second-order singularly perturbed boundary-value problems, J. Comput. Appl. Math., 147, 445-452 (2002).
C. F. Chen and C. H. Hsiao, Haar wavelet method for solving lumped and distributed-parameter system, IEEE Proc.-Control Theory Appl., 144, 87-94 (1997).
I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math. 41, 909-996 (1988).
L. Debnath and F. A. Shah, Wavelet transform and their application, Springer New York, Birkhauser, 337-440 (2015).
M. Frazier, B. Jawerth and G. Weiss, Littlewood-Paley Theory and the Study of Function Spaces, CBMS Regional Conference Series in Mathematics (The American Mathematical Society, Providence, RI), 79, (1991).
A. Haar, Zur theorie der orthogonalen funktionen-systeme, Math. Ann. 69, 331-371(1910).
E. Hernandez and G. Weiss, A First Course on Wavelets, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, (1996).
S. Islam, I. Aziz and B. Sarler, The numerical solution of second order boundary value problems by collocation method with Haar wavelets, Math Comput. Model, 50, 1577-1590 (2010).
M. K. Kadalbajoo and K. K. Sharma, Numerical analysis of boundary-value problems for singularly perturbed differential-difference equations: small shifts of mixed type with rapid oscillations, Commun. Numer. Meth. Engng 20, 167–182 (2004).
M. K. Kadalbajoo and K. K. Sharma, Numerical analysis of boundary-value problems for singularly-perturbed differential-difference equations with small shifts of mixed type, J. Opt. Theory Appl. 115, 145-163 (2002).
M. K. Kadalbajoo and K. K. Sharma, Numerical treatment of a mathematical model arising from a model of neuronal variability, J. Math. Anal. Appl. 307, 606-627 (2005).
A. Khan and P. Khandelwal, Non-polynomial sextic spline solution of singularly perturbed boundary-value problems, Int. J. Comp. Math., 91, 1122-1135 (2014).
A.Khan,I.KhanandT.Aziz,Sexticsplinesolutionofsingularlyperturbedboundary-value problems, Appl. Math. Comput. 181, 432-439 (2006).
J. Kevorkian and J. D. Cole, Perturbation Methods in Applied Mathematics, Springer, New York. Mathematics, 20, 33-53 (1981).
D. Kumar and M. K. Kadalbajoo, A parameter-uniform numerical method for time- dependent singularly perturbed differential-difference equations, Appl. Math. Model. 35, 2805-2819 (2011).
D. Kumar and M. K. Kadalbajoo, Numerical treatment of singularly perturbed delay dif- ferential equations using B-Spline collocation method on Shishkin mesh, J. Numer. Anal. Indust. App. Math., 7, 73-90 (2012).
D. Kumar and M. K. Kadalbajoo, Numerical approximations for singularly perturbed differential-difference BVPs with layer and oscillatory behaviour, J. Numer. Math., 20, 33-53 (2012).
V. Kumar and M. Mehra, Cubic spline adaptive wavelet scheme to solve singularly perturbed reaction-diffusion problems, J. Wavelets Multiresoult. Inf. Process. 5(2), 317-331 (2007).
C. G. Lange and R. M. Miura, Singular perturbation analysis of boundary-value problems for differential-difference equations. v. small shifts with layer behavior, SIAM J. Appl. Math. 54, 249-272 ( 1994).
U. Lepik, Application of Haar wavelet transform to solving integral and differential equa- tions, Appl. Math. Comput. 57, 28-46 (2007).
U. Lepik, Haar wavelet method for solving stiff differential equations, Math. Mode. Anal.14, 467-481 (2009).
U. Lepik and H. Hein, Haar Wavelet With Applications, Springer,7-44(2014).
S. G. Mallat, Multiresolution approximations and wavelet orthonormal bases of L2(R), Trans. Amer. Math. Soc. 315, 69-87 (1989).
A. H. Nayfeh, Perturbation Methods, Wiley, New York (1979).
O. Oruc, A Haar wavelet approximation for two-dimensional time fractional reaction- subdiffusion equation, Engineering Computers. https://doi.org/10.1007/s00366-018-0584-8 (2018).
S. Pandit and M. Kumar, Haar wavelet approach for numerical solution of two parameters singularly perturbed boundary value problems. Appl. Math. Inf. Sci., 8, 2965-2974 (2014).
S. Pandit and M. Kumar, Wavelet Transform and Wavelet-based Numerical Methods: Int. J. Nonlinear Sci. 13, 325-345 (2012).
K. C. Patidar and K. K. Sharma, Uniformly convergent non-standard finite difference methods for singularly perturbed differential-difference equation with delay and advance, Int. J. Numer. Meth. Engng. 66, 272-296 (2006).
A. Raza and A. Khan, Haar wavelet series solution for solving neutral delay differential equations, J. King Saud Uni.-Sci., 31, 1070-1076 (2019). https://doi.org/10.1016/j.jksus.2018.09.013 (2019).
P. Rai and K. K. Sharma, Numerical study of singularly perturbed differential-difference equation arising in the modeling of neuronal variability, Comput. Math. Appl. 63, 118-132 (2012).
F. A. Shah, R. Abass and J. Iqbal, Numerical solution of singularly perturbed problems using Haar wavelet collocation method, Cogent Math. 3, (2016).
F. A. Shah and R. Abass, An efficient wavelet-based collocation method for handling sin- gularly perturbed boundary-value problems in fluid mechanics, Int. J. Non. Sci. and Num. Sim., 18(6), 7-25 (2017).