Approximation of Functions in Besov Space
Main Article Content
Abstract
In the present paper, we establish a theorem on best approximation of a function $g \in B_q^{\lambda}(L^r)$ of its Fourier series. Our main theorem generalizes some known results of this direction of work. Thus, the results of [10], [26] and [27] become the particular case of our main Theorem 3.1.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
A. DeVore Ronald and G. Lorentz, Costructive Approximation, Springer-Verlay, Berlin Hei- delberg, New York, (1993).
A. Zygmund, Smooth functions, Duke Math. Journal, 12, 47 − 56, (1945).
A. Zygmund, Trigonometric series, 2nd rev. ed., I, Cambridge Univ. Press, Cambridge, 51 (1968).
B. E. Rhoades, On the degree of approximation of functions belonging to the weighted (Lp, ξ(t))-class by Hausdorff means, Tamkang J. Math., 32(4), 305 − 314, (2001).
E. C. Titchmarsh, The Theory of functions, Second Edition, Oxford University Press, p. 403, (1939).
F. Hausdorff, Summationsmethoden and Momentfolgen, Math. Z., 9, I: 74−109, II : 280−289, (1921).
G. Alexits, Convergence problems of orthogonal series, Translated from the German by I. Földer. International Series of Monographs in Pure and Applied Mathematics, vol. 20. Perg- amom, New York (1961).
G. Das, A. Nath and B. K. Ray, An estimate of the rate of convergence of Fourier series in the generalized Hölder metric, Analysis and Applications, 43 − 60, (2002).
G. Das, T. Ghosh and B. K. Ray, Degree of approximation by their Fourier series in generalized Hölder metric, Proc Indian Acad. Sci. Math. Sci., 106, 139 − 153, (1996).
H. K. Nigam and K. Sharma, Approximation of functions belonging to different classes of functions by (E, 1)(N, pn) product means, Lobachevskii Journal of Mathematics, Vol. 32(4), 345 − 357, (2011).
H. L. Garabedian, Hausdorff matrices, Amer. Math. Monthly, 46(7), 390−410,(1939).
H. Mohanty, G. Das and B. K. Ray, Degree of approximation of Fourier series of function in Besov space by (N, pn) mean, J. Orissa Math. Soc., 30(2), 13 − 34, (2011).
H. Triebel, Theory of Function spaces, Reprint of 1983 edition. Birhäuser/Springer Basel, (2010).
I. J. Maddox, Elements of functional Analysis, Cambridge Univ. Press, Cambridge, (1970).
L. Leindler, Trigonometric approximation in Lp-norm, J. Math. Anal. Appl., 302, 129−136, (2005).
L. Leindler, A relaxed estimate of the degree of approximation by Fourier series in generalized Hölder metric, Anal. Math., 35 (1), 51 − 60, (2009).
L. Mc Fadden, Absolute Nörlund summability, Duke Math. J., 9, 168−207, (1942).
M. L. Mittal, B. E. Rhoades, V. N. Mishra and U. Singh, Usingin finite matrices to approximate functions of class Lip(α, p) using trigonometric polynomial, J. Math. Anal. Appl., 326(1), 667 − 676, (2007).
M. L. Mittal, B. E. Rhoades, S. Sonker and U. Singh, Approximation of signals of class Lip(α, p) by linear operators, Appl. Math. Comput., 217(9), 4483 − 4489, (2011).
M. L. Mittal and M. V. Singh, Approximation of signals (functions) by trigonometric polynomials in Lp-norm, Int. J. Math. Math. Sci., Article ID : 267383, (2014).
R. N. Mohapatra and P. Chandra, Degree of approximation of functions in the Hölder metric, Acta Math. Hung., 41(1 − 2), 67 − 76, (1983).
P. Chandra, On the generalized Fejér means in the metric of Hölder space, Math. Nachr. 109, 39 − 45, (1982).
P. Chandra, Trigonometric approximation of functions in Lp-norm, J. Math. Anal. Appl., 275, 13 − 26, (2002).
P. Wojtaszczyk, A Mathematical Introduction to Wavelets, London Mathematical SocietyStu- dent Texts, Cambridge University Press, New York, Vol. 37, (1997).
E. S. Quade, Trigonometric approximation in the mean, Duke Math. J., 3(3), 529 − 543, (1937).
R. Singh and S. S. Thakur, Degree of approximation of continuous functions by (E, q)(C, δ) means, Gen. Math. Notes, Vol. 11(2), 12 − 19, (2012).
S. Lal, Approximation of functions belonging to the generalized Lipschitz class by C1 · Np summability method of Fourier series, Appl. Math. Comp., 209, 346 − 350, (2009).
S. Prössdorf, Zor Konvergenz der Fourierreihen Hölder stetiger, Funktionen. Math Nachr.,69, 7 − 14, (1975).