Position Vectors of Curves Generalizing General Helices and Slant Helices in Euclidean 3-Space

Main Article Content

Abderrazak El Haimi
Malika Izid
https://orcid.org/0000-0001-9509-6348
Amina Ouazzani Chahdi

Abstract




In this paper, we give a new characterization of a k-slant helix which is a generalization of general helix and slant helix. Thereafter, we construct a vector differential equation of the third order to determine the parametric representation of a k-slant helix according to standard frame in Euclidean 3-space. Finally, we apply this method to find the position vector of some examples of 2-slant helix by means of intrinsic equations.




Article Details

How to Cite
Haimi, A. E., Izid, M., & Chahdi, A. O. (2021). Position Vectors of Curves Generalizing General Helices and Slant Helices in Euclidean 3-Space. Tamkang Journal of Mathematics, 52(4), 467–478. https://doi.org/10.5556/j.tkjm.52.2021.3463
Section
Papers

References

Ahmad T. Ali, Position vector of general helices in Euclidean 3−space, Bull. Math. Anal. Appl. 3( 2011), 1–8.

Ahmad T. Ali, Position vector of slant helices in Euclidean 3−space, Journal of Egyptian Mathematical Society ( 2012).

Ahmad T. Ali, New special curves and their spherical indicatrices, GlobalJ. Adv. Res. Class. Mod. Geom. 1(2012) , 28–38.

Ahmad T. Ali, Generalization of general helices and slant helices, Journal of Mahani math- ematical. 1-2( 2017) 25–41.

B. Uzunoğlu, I. GÖk and Y. Yayli, A new approach on curves of constant precession, Appl. Math. Comput. 275(2013), 317–323.

D. J. Struik, Lectures in Classical Differential Geometry, Addison-Wesley, Reading, Ma, 1961.

H. H. Hacisalihoglu, Differential Geometry, Ankara University, Faculty of Science Press, 2000.

L. Kula, N. Ekmekci,Y. Yayli and K. Ilarslan, Characterizations of a slant helices in Euclidean 3−space, Turk. J. Math. 34 (2010), 261–273.

L. Kula and Y. Yayli, on slant helice and its spherical indicatrix, Appl. Math. Comput. 169(2005), 600–607.

L. P. Eisenhart, A Treatise on the differenetial Geometry of curve and Surfaces, Ginn and Co., 1909.

M. A. Lancret, Mémoire sur les courbes à double courbure, Mémoires présentés à l’Institut 1(1806), 416–454.

M. M. Lipschutz, Schum’s Outline of Theory and Problems of differential Geometry, McGraw-Hill Book Company, New York, 1969.

S. Izumiya and N. Takeuchi, New special curves and developable surfaces, Turk. J. Math. 28(2004),153–163.