On Subspace-recurrent Operators
Main Article Content
Abstract
In this article, subspace-recurrent operators are presented and it is showed that the set of subspace-transitive operators is a strict subset of the set of subspace-recurrent operators. We demonstrate that despite subspace-transitive operators and subspace-hypercyclic operators, subspace-recurrent operators exist on finite dimensional spaces. We establish that operators that have a dense set of periodic points are subspace-recurrent. Especially, if $T$ is an invertible chaotic or an invertible subspace-chaotic operator, then $T^{n}$, $T^{-n}$ and $\lambda T$ are subspace-recurrent for any positive integer $n$ and any scalar $\lambda$ with absolute value $1$. Also, we state a subspace-recurrence criterion.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
N. Bamerni, V. Kadets and A. Kilicman, Hypercyclic operators are subspace-hypercyclic, J. Math. Anal. Appl., 435 (2016), 1812-1815.
A. Bonilla, K. G. Grosse-Erdmann, A. Lopez-Martinez and A. Peris, Frequently recurrent operators, arXiv:2006.11428v1.
C. C. Chen, Recurrence of cosine operator functions on groups, Canad. Math. Bull., 59 (2016), 693–704.
G. Costakis and I. Parissis, Szemeredi’s theorem, frequent hypercyclicity and multiple re- currence, Math. Scand., 110 (2012), 251–272.
G. Costakis, A. Manoussos and I. Parissis, Recurrent linear operators, Complex. Anal. Oper. Th., 8 (2014), 1601–1643.
C. T. J. Dodson, A review of some recent work on hypercyclicity, Balk. J. Geo. App., 19 (2014), 22–41.
H. Furstenberg, Recurrence in ergodic theory and combinatorial number theory, Princeton University Press, 1981.
H. Furstenberg, Poincare recurrence and number theory, B. Am. Math. Soc., 5 (1981), 211–234.
E. Glasner, Classifying dynamical systems by their recurrence properties, Journal of the Juliusz Schauder Center, 24 (2004), 21–40.
W. H. Gottschalk and G. H. Hedlund, Topological dynamics, American Mathematical Society, 1994.
K. G. Grosse-Erdmann and A. PerisManguillot, Linear chaos, Springer, 2011.
C. M. Le, On subspace-hypercyclic operators, Proc. Amer. Math.Soc., 139 (2011), 2847- 2852.
B. F. Madore and R. A. Martiınez-Avendano, Subspace hypercyclicity, J. Math. Anal. Appl., 373 (2011), 502–511.
R. A. Martinez-Avendano and O. Zatarain-Vera, Subspace-hypercyclicity for Toeplitz op- erators, J. Math. Anal. Appl., 422 (2015), 60–68.
M. Moosapoor, Common subspace-hypercyclic vectors, Int. J. Pure Appl. Math.,118(2018), 865–870.
S. Talebi and M. Moosapoor, Subspace-chaotic operators and subspace-weakly mixing op- erators, Int. J. Pure Appl. Math., 78 (2012), 879–885.
Z. Yin, Chaotic dynamics of composition operators on the space of continuous functions, Int. J. Bifurcat. Chaos., 27 (2017), 1–12.