Notes on the starlikeness of an integral transform

Main Article Content

Jian-Lin Li

Abstract

Let $ A $ denote the class of normalized analytic functions in the unit disk $ D $. For $ f(z) \in A $ and $ \alpha > 0 $, let $ F_{\alpha} (z) = \int_0^z (f(t)/t)^{\alpha} dt $ in $ D $. In this note, the author obtains the best constant $ \beta (\alpha) $ for each $ \alpha \in (0,3] $ such that Re$ \{ f'(z) (f(z)/z)^{\alpha -1} \} > \beta (\alpha) $ implies the starlikeness of $ F_{\alpha} (z) $.

Article Details

How to Cite
Li, J.-L. (2001). Notes on the starlikeness of an integral transform. Tamkang Journal of Mathematics, 32(2), 151–154. https://doi.org/10.5556/j.tkjm.32.2001.358
Section
Papers
Author Biography

Jian-Lin Li

Research Center for Science, Xi’an Jiaotong University, Xi’an, Shaan Xi 710049, P. R. China. Department of Applied Mathematics, Northwestern Polytechnical University, Xi’an, Shaan Xi 710072, P. R. China (Permanent address).