Notes on the starlikeness of an integral transform
Main Article Content
Abstract
Let $ A $ denote the class of normalized analytic functions in the unit disk $ D $. For $ f(z) \in A $ and $ \alpha > 0 $, let $ F_{\alpha} (z) = \int_0^z (f(t)/t)^{\alpha} dt $ in $ D $. In this note, the author obtains the best constant $ \beta (\alpha) $ for each $ \alpha \in (0,3] $ such that Re$ \{ f'(z) (f(z)/z)^{\alpha -1} \} > \beta (\alpha) $ implies the starlikeness of $ F_{\alpha} (z) $.
Article Details
How to Cite
Li, J.-L. (2001). Notes on the starlikeness of an integral transform. Tamkang Journal of Mathematics, 32(2), 151–154. https://doi.org/10.5556/j.tkjm.32.2001.358
Issue
Section
Papers